Abschlussarbeit

zur Erlangung des
Master of Advanced Studies in Real Estate

Building Information Modeling (BIM) – Eine erste Einschätzung zu
Vor- und Nachteilen bei der Umsetzung von Hochbauprojekten in der
Schweiz aus der Sicht des Bauherrn.

Verfasser: Ramsteiner
Andreas

Eingereicht bei: Prof. Friedrich Häubi

Abgabedatum: 28.08.2017
Inhaltsverzeichnis

Abkürzungsverzeichnis .. IV
Abbildungsverzeichnis .. V
Tabellenverzeichnis .. VI
Executive Summary ... VII
1. Einleitung ... 1
 1.1 Problematik / Ausgangslage .. 1
 1.2 Zielsetzung ... 2
 1.3 Vorgehen .. 2
 1.4 Abgrenzung .. 3
2. Theoretische Grundlagen .. 4
 2.1 Status Quo Planungsmethode .. 4
 2.2 Methodik BIM ... 5
 2.2.1 Definition .. 5
 2.2.2 Modellbasiertes Arbeiten .. 8
 2.2.3 Prozesse- und Informationsmanagement .. 10
 2.2.4 Übersicht der Vorteile gemäss Literaturrecherche 13
 2.2.5 Übersicht der Nachteile gemäss Literaturrecherche 19
3. Empirische Untersuchung .. 22
 3.1 Methodischer Ansatz ... 22
 3.2 Aufbau Fragenkatalog Interview ... 23
 3.3 Auswahl der Experten .. 23
 3.4 Planung und Durchführung .. 25
4. Auswertung der Experteninterviews .. 27
 4.1 Verständnis / Auseinandersetzung der Experten mit der Methodik BIM 27
 4.1.1 Verständnis ... 27
 4.1.2 Auseinandersetzung .. 28
 4.2 Erfahrungen der Experten mit der Methodik BIM .. 29
4.3 Beweggründe des Bauherrn für die Anwendung der Methodik BIM 30
4.4 Einfluss der Methodik BIM auf die Umsetzung von Hochbauprojekten 31
4.5 Vor- und Nachteile der Methodik BIM aus Sicht der Experten in den Hauptphasen eines Hochbauprojektes ... 32
 4.5.1 Projektinitierungsphase ... 34
 4.5.2 Planungs- und Bewilligungsphase .. 36
 4.5.3 Ausschreibungs- und Ausführungsphase .. 38
 4.5.4 Betriebsphase .. 40
 4.5.5 Auswirkungen der Methodik BIM auf die Planungsphase 42
4.6 Auswertung der Fragebögen der Experteninterviews 44
4.7 Entwicklung der Methodik BIM in den kommenden 10 Jahren 53
5. Schlussbetrachtung .. 55
 5.1 Fazit .. 55
 5.2Diskussion .. 58
 5.3 Ausblick ... 58
Literaturverzeichnis .. 59
Anhang ... 61
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP</td>
<td>Application software</td>
</tr>
<tr>
<td>AIA</td>
<td>American Institute of Architects</td>
</tr>
<tr>
<td>BIM</td>
<td>Building Information Modeling</td>
</tr>
<tr>
<td>BMVBS</td>
<td>Bundesministerium für Verkehr, Bau und Stadtentwicklung</td>
</tr>
<tr>
<td>BBSR</td>
<td>Bundesinstituts für Bau-, Stadt- und Raumforschung</td>
</tr>
<tr>
<td>BBR</td>
<td>Bundesamt für Bauwesen und Raumentwicklung</td>
</tr>
<tr>
<td>BSI</td>
<td>British Standards Institution</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>COBie</td>
<td>Construction Operations Building Information Exchange</td>
</tr>
<tr>
<td>CSV</td>
<td>Comma Separated Values</td>
</tr>
<tr>
<td>DXF</td>
<td>Drawing Interchange File Format</td>
</tr>
<tr>
<td>EDV</td>
<td>Elektronische Datenverarbeitung</td>
</tr>
<tr>
<td>GML</td>
<td>Geography Markup Language</td>
</tr>
<tr>
<td>LOD</td>
<td>Level of Development</td>
</tr>
<tr>
<td>LOG</td>
<td>Level of Geometry</td>
</tr>
<tr>
<td>LOI</td>
<td>Level of Information</td>
</tr>
<tr>
<td>NBIMS</td>
<td>National BIM Standards</td>
</tr>
<tr>
<td>IFC</td>
<td>Industry Foundation Classes</td>
</tr>
<tr>
<td>OCCS</td>
<td>OmniClass Construction Classification System</td>
</tr>
<tr>
<td>SIA</td>
<td>Schweizerischer Ingenieur- und Architektenverein</td>
</tr>
<tr>
<td>STP</td>
<td>Standard for the Exchange of Product model data</td>
</tr>
<tr>
<td>VDC</td>
<td>Virtual Design and Construction</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1: Dezentrales Datenmanagement (Burckhardt+Partner AG, 2017) 5
Abbildung 2: Zentrales Datenmanagement (Burckhardt+Partner AG, 2017) 6
Abbildung 3: Virtuelles & Reales Produkt (Burckhardt+Partner AG, 2017) 7
Abbildung 4: BIM Anwendungsarten (in Anlehnung an SIA, 2016, S. 28) 7
Abbildung 5: BIM-Modelle (Burckhardt+Partner AG, 2017) 8
Abbildung 6: Übersicht LOD (Ernst Basler + Partner, 2015, S. 15) 9
Abbildung 7: BIM-Prozess in Anlehnung an (BSI, 2013,S.viii) () 11
Abbildung 8: Verfahren der BIM-Modellkoordination (prSIA 2015, S.22) 12
Abbildung 9: Prozessverlagerung durch BIM (in Anlehnung an Macleamy) 12
Abbildung 10: Übersicht zur Ausbildung der Experten 24
Abbildung 11: Übersicht zur Erfahrung der Experten im Bausektor 24
Abbildung 12: Übersicht Rolle der Experten im Bausektor 25
Abbildung 13: Übersicht Rolle der Experten im Unternehmen 25
Abbildung 14: Übersicht zur Auseinandersetzung mit BIM 28
Abbildung 15: Erfahrung mit BIM .. 28
Abbildung 16: Realisierte Projekte mittels BIM ... 28
Abbildung 17: Auswertung Frage 1 „Verbesserung Kommunikation“ 44
Abbildung 18: Auswertung Frage 2 „Reduktion Projektfehler“ 44
Abbildung 19: Auswertung Frage 3 „Verbesserung der Koordination“ 45
Abbildung 20: Auswertung Frage 4 „Mittels Simulation / Effizienteres Gebäude“ .. 45
Abbildung 21: Auswertung Frage 5 „Simulation / Bauzeitverkürzung“ 46
Abbildung 22: Auswertung Frage 6 „Überprüfung Entscheide / Modell“ 46
Abbildung 23: Auswertung Frage 7 „Datenzusammenführung in einem Modell“ 47
Abbildung 24: Auswertung Frage 8 „Schnellere Übernahme Projektänderungen“ 47
Abbildung 25: Auswertung Frage 9 „Vereinfachte Zertifizierung“ 48
Abbildung 26: Auswertung Frage 10 „Kostenreduktion / Hochbauprojekten“ 48
Abbildung 27: Auswertung Frage 11 „Verschiebung Planungskosten“ 49
Abbildung 28: Auswertung Frage 12 „Geringe Erfahrungswerte / Umsetzung“ 49
Abbildung 29: Auswertung Frage 13 „Frühere Klärung der Projektanforderungen“ .. 50
Abbildung 30: Auswertung Frage 14 „Durchführung Due Diligence“ 50
Abbildung 31: Auswertung Frage 15 „Höherer Transaktionspreis“ 51
Abbildung 32: Auswertung Frage 16 „Durchgehender Informationsfluss“ 51
Abbildung 33: Auswertung Frage 17 „Datenversorgung / Betreiber und FM“ 52
Abbildung 34: Auswertung Frage 18 „Ausbildung geeignetes Personal“ 52
Tabellenverzeichnis

Tab. 1: Zusammenfassung Vorteile aus der Literaturrecherche .. 14
Tab. 2: Zusammenfassung Nachteile aus der Literaturrecherche 19
Executive Summary
Mit dieser Abschlussarbeit soll aufgezeigt werden welche Vor- und Nachteile bei der Umsetzung von Hochbauprojekten mit der Methodik BIM aus Sicht des Bauherrn auftreten.

Aus den geführten Experteninterviews geht hervor, dass die Methodik BIM in den unterschiedlichen Phasen eines Hochbauprojektes Vor- und Nachteile hat, wobei die Vorteile überwiegen.

Als wesentliche Nachteile wurden die noch mangelnde Erfahrung aller Parteien mit der Methodik BIM, der hohe Aufwand für die Implementierung, Unklarheiten in Bezug zur Honorierung, der Datenaustausch unter den Beteiligten und die Leistungsfähigkeit der vorhandenen Softwarelösungen benannt. Absehbar ist jedoch, dass sich der derzeitige Nachteil der mangelnden Erfahrung, mit der verstärkten Anwendung der Methodik egalisieren wird.

Aus Sicht der Experten wird sich die Methodik BIM in der Schweiz in den kommenden Jahren als Standard etablieren. Wobei die Anwendung der Methodik BIM, von der Art und Nutzung eines Projektes abhängig ist. Je komplexer und umfassender ein Projekt ist, um so gewinnbringender kann die Methodik BIM eingesetzt werden.
1. Einleitung

1.1 Problematik / Ausgangslage

In der Schweiz ist die Anwendung der Methodik BIM noch in der Pionierphase. Im Vergleich zu anderen Ländern wie z.B. der USA, Großbritannien oder Deutschland, in der die Methodik BIM bereits erfolgreich eingesetzt wird. Dies hat zur Folge, dass im Schweizer Bausektor die Erfahrungswerte zur Methodik BIM bei der Umsetzung von Hochbauprojekten noch sehr gering.

Jedoch haben einige Pioniere der Baubranche ihre Prozesse und deren Informationstechnik bereits erfolgreich auf die Methodik BIM umgestellt. Um das volle Potenzial der Methodik BIM bei der Umsetzung von Hochbauprojekten ausschöpfen zu können, müssen im besten Fall alle daran beteiligten Parteien die Methodik BIM anwenden. Erst dann profitieren nicht nur einzelne Parteien von der neuen Arbeitsweise, sondern alle Interessengruppen. Der wichtigste Entscheidungsträger im Immobiliensektor ist der Bauherr\(^1\). Über die durch ihn definierten Anforderungen an das Gebäude und den damit verbundenen vertraglichen Regeln steuert er das Vorhaben. Dementsprechend wird die weitere Entwicklung der Methodik BIM ein Stück weit davon abhängen, dass von Seiten der Bauherren das Potenzial erkannt wird und somit die Nachfrage steigt, Hochbauprojekte mit der Methodik BIM umzusetzen. Aufgrund dieser Sachlage liegt der Schwerpunkt dieser Abschlussarbeit darin, aus Sicht des Bauherrn aufzuzeigen, welche Vor- und Nachteile die Methodik BIM bei der Umsetzung von Hochbauprojekten mit sich bringt.

\(^1\) Definition Bauherr gemäss SIA 112 (2014) „Der Bauherr ist der oberste Entscheidungsträger eines Bauvorhabens. Er kann Grundwirt und/oder Investor sein. Er ist der Gesuchsteller in den erforderlichen Bewilligungsverfahren“. (S. 6)
1.2 Zielsetzung
Anhand dieser Abschlussarbeit soll aufgezeigt werden, welche Vor- und Nachteile die Methodik BIM aus Sicht des Bauherrn hat. Wie wirken sich diese auf die Abwicklung von Hochbauprojekten aus und was sind die Beweggründe für den Bauherrn Hochbauprojekte mit der Methodik BIM umzusetzen. Grundsätzlich ist zu klären, ob die Methodik BIM zu einer Verbesserung der Planung, Erstellung und Bewirtschaftung von Immobilien beitragen kann.

Die daraus abgeleiteten Forschungsfragen lauten:

I. Was verstehen die Experten unter der Methodik BIM und welche Erfahrungen haben Sie damit gemacht?
II. Erleichtert und verbessert die Methodik BIM die Umsetzung von Hochbauprojekten?
III. Welche Vorteile treten bei der Umsetzung von Hochbauprojekten mit der Methodik BIM auf?
IV. Welche Nachteile treten bei der Umsetzung von Hochbauprojekten mit der Methodik BIM auf?
V. Welche Auswirkungen hat die Methodik BIM auf die Planungsphase?
VI. Was sind die Beweggründe des Bauherrn für die Umsetzung von Hochbauprojekten mit der Methodik BIM?
VII. Wie sehen die Experten die weitere Entwicklung der Methodik BIM in den kommenden 10 Jahren?

Diese Abschlussarbeit soll einen Beitrag dazu leisten, das Verständnis der Methodik BIM in der Schweiz zu verbessern und mit Hilfe des Aufzeigens wesentlicher Vor- und Nachteile Bauherrn bei der Entscheidungsfindung zur Anwendung der Methodik BIM zu unterstützen.

1.3 Vorgehen
Die Untersuchung der oben genannten Forschungsfragen erfolgt in drei Teilen. Im ersten Teil werden zum einen die theoretischen Grundlagen der konventionellen Planung, welche heute bei der Umsetzung der meisten Bauprojekte angewendet werden, erläutert. Zum anderen wird die Methodik BIM und die damit verbundene Arbeitsweise dargestellt. Die Grundlagen für den ersten Teil werden über eine umfassende Literaturrecherche erarbeitet. In der Schweiz selbst gibt es zurzeit noch wenige Forschungsbeiträge
hinsichtlich Vor- und Nachteile der Methodik BIM. Im Sinne einer Vergleichbarkeit, wird im Folgenden daher auf Beiträge aus dem deutschsprachigen Raum zurückgegriffen.

Im zweiten Teil wird die hier angewandte empirische Forschungsmethode und der damit verbundene Prozess zur Ermittlung der Daten und deren Auswertung aufgezeigt und beschrieben.

Der dritte Teil widmet sich der Auswertung der erfassten Daten und der daraus erzielten Erkenntnisse zur Beantwortung der gestellten Forschungsfragen. Abschliessend werden die Erkenntnisse nochmals zusammengefasst und diskutiert. Des Weiteren wird die Abschlussarbeit kritisch bewertet und ein Ausblick auf die weitere Entwicklung der Methodik BIM gewagt.

1.4 Abgrenzung
Die vorliegende Abschlussarbeit beschränkt sich auf den Immobilien- und Bausektor in der Schweiz und die damit verbundenen Branchenteilnehmer, die als Bauherren oder Besteller in Erscheinung treten und sich zurzeit aktiv mit der Methodik BIM und dessen Einsatz beschäftigen.

Bis zum heutigen Zeitpunkt sind in der Schweiz nur eine geringe Anzahl Projekte vollumfänglich mit der Methodik BIM realisiert worden. Dementsprechend sind der Expertenkreis und die damit einhergehenden Erfahrungen noch sehr klein und es können nur wenige Ertrag bringende Interviews durchgeführt werden.

2. Theoretische Grundlagen

2.1 Status Quo Planungsmethode

- Projektinitiierungsphase, SIA Phase 1+2
- Planungs- und Bewilligungsphase, SIA Phase 3
- Ausschreibungs- und Ausführungsphase, SIA Phase 4+5
- Betriebsphase, SIA Phase 6

In der Schweiz werden die entsprechenden Leistungen meistens anhand der konventionellen Planungsmethode aufbereitet. Bei dieser werden die notwendigen Beschriebe, Zeichnungen und Dokumente unabhängig von den einzelnen Fachbereichen, wie auf Abbildung 1 gezeigt, erstellt und bewirtschaftet. Der Austausch der einzelnen Planungsleistungen unter den diversen Beteiligten erfolgte bis vor wenigen Jahren in Form von 2D-Plänen, die ausgedruckt oder in digitaler Form erarbeitet wurden. Auf dieser Basis erfolgt traditionell die Planung, Koordination, Kommunikation, Erstellung und der spätere Betrieb des Bauwerks. Dieses Vorgehen bringt jedoch einige Probleme und Risiken mit sich, die mit einem hohen Aufwand an Kommunikation, Kontrolle und Koordination der Arbeitsergebnisse bewerkstelligt werden kann. Ein wesentlicher Risikobereich liegt dabei bei den diversen Schnittstellen zwischen den einzelnen Fachbereichen, die sich aus der Planungsmethode auf Basis unterschiedlicher dezentraler
Arbeitsresultate und Daten ergeben. Des Weiteren sind die Planungsresultate der einzelnen Fachbereiche für Aussenstehende und Laien oft nur schwer nachvollziehbar.

Abbildung 1: Dezentrales Datenmanagement (Burckhardt+Partner AG, 2017)

Bei diesen Problemstellungen setzt die Methodik BIM an. In den folgenden Kapiteln werden die wichtigsten Bestandteile der Methodik BIM genauer beschrieben und in Einzelfällen mit der konventionellen Planungsmethode verglichen.

2.2 Methodik BIM

2.2.1 Definition

In der Literatur gibt es unterschiedliche Definitionen zur Methodik “Building Information Modeling” (BIM). Hier ein Auszug aus den wichtigsten Literaturquellen:

„Shared digital representation of physical and functional characteristics of any built object (including buildings, bridges, roads, etc.) which forms a reliable basis for decisions.“ (Standard, International, 2010, S. 1)

„Building Information Modeling (BIM) ist eine Planungsmethode im Bauwesen, die die Erzeugung und die Verwaltung von digitalen virtuellen Darstellungen der physikalischen und funktionalen Eigenschaften eines Bauwerks beinhaltet. Die Bauwerksmodelle stellen dabei eine Informationsdatenbank rund um das Bauwerk dar, um eine verlässliche Quelle für Entscheidungen während des gesamten Lebenszyklus zu bieten; von der ersten Vorplanung bis zum Rückbau.“ (Bundesamt für Bauwesen und Raumentwicklung (BBR), 2013, S. 18; National BIM Standard-United States, kein Datum)

„Building Information Modeling bezeichnet eine kooperative Arbeitsmethodik, mit der auf der Grundlage digitaler Modelle eines Bauwerks die für seinen Lebenszyklus relevanten Informationen und Daten konsistent erfasst, verwaltet und in einer transparenten Kommunikation zwischen den Beteiligten ausgetauscht oder für die weitere Bearbeitung übergeben werden.“ (Bundesministerium für Verkehr und digitale Infrastruktur, 2015)

Abbildung 2: Zentrales Datenmanagement (Burckhardt+Partner AG, 2017)
Wie auf Abbildung 3 gezeigt, wird im Prinzip das gewünschte Gebäude als virtuelles Produkt / digitaler Zwilling am Computer durch die einzelnen Fachbereiche modelliert. Auf dieser Modell-Datengrundlage erfolgt die spätere Ausführung des realen Produktes / Gebäudes.

Abbildung 3: Virtuelles & Reales Produkt (Burckhardt+Partner AG, 2017)

Abbildung 4: BIM Anwendungsarten (in Anlehnung an SIA, 2016, S. 28)

2.2.2 Modellbasiertes Arbeiten

![Abbildung 5: BIM-Modelle (Burckhardt+Partner AG, 2017)](image-url)

Abbildung 6: Übersicht LOD (Ernst Basler + Partner, 2015, S. 15)

2.2.3 Prozesse- und Informationsmanagement
Abbildung 7: BIM-Prozess in Anlehnung an (BSI, 2013,S.viii)

Abbildung 8: Verfahren der BIM-Modellkoordination (prSIA 2015, S.22)

Im BIM-Koordinationsplan wird der Ablauf der Koordination, wie in Abbildung 8 gezeigt, unter den Fachbereichen definiert. Es wird darin beschrieben in welchen Intervallen die Prüfung und Abstimmung der Modelle erfolgen soll, welche Modelle koordiniert werden, mit welchem Austauschformat gearbeitet wird, wie die Überprüfung erfolgen soll, wer welche Verantwortlichkeiten in Bezug zu Modelländerungen hat, in welcher Form die Freigabe der Modelle erfolgen wird, wie der Datenaustausch erfolgen soll und welche Anforderungen an den fachspezifischen Austausch gestellt werden. (SIA, 2016, S. 21-23).

Wie auf Abbildung 9 dargestellt ergibt sich aus dem BIM-Prozess eine Vorverlagerung von Planungs- und Entscheidungsprozessen im Vergleich zur konventionellen Planung. Hierdurch besteht die Möglichkeit kostenrelevante Änderungen frühzeitig zu evaluieren und spätere Änderungen, die mit hohen Kosten verbunden sind, zu vermeiden (Borrmann, König, Koch, & Beetz, 2015).

Abbildung 9: Prozessverlagerung durch BIM (in Anlehnung an Macleamy)
Übersicht der Vorteile gemäss Literaturrecherche

In der Tabelle 1 wurden die recherchierten Vorteile der Methodik BIM zusammengefasst. Die entsprechenden Textpassagen aus den einzelnen Quellen sind im anschliessenden Text im Detail zitiert.

<table>
<thead>
<tr>
<th>Hausknecht und Liebich (2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. BIM Daten erhöhen die Transparenz (S.52)</td>
</tr>
<tr>
<td>b. Erhöhte Zuverlässigkeit durch Informationsauszüge aus dem Modell und deren visueller Rückkoppelnung (S.52)</td>
</tr>
<tr>
<td>c. Verbesserte Zusammenarbeit durch integrales Planen am Modell (S.52)</td>
</tr>
<tr>
<td>d. Einsparpotenzial durch frühen Einbezug von Ausführungs- und Betriebswissen. (S.52)</td>
</tr>
<tr>
<td>e. Optimierung der Lebenszykluskosten (S.52)</td>
</tr>
<tr>
<td>f. Frühzeitige Optimierung des Projekts in Bezug zur Nachhaltigkeit (S.52)</td>
</tr>
<tr>
<td>g. Einfachere Kommunikation mit den Bürgern (S.52)</td>
</tr>
<tr>
<td>h. Verbesserung des Branchenimages (S.52)</td>
</tr>
<tr>
<td>i. Umfassende, offen zugängliche und von vielen nutzbare Bauwerksinformationen (S.53)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Borrmann, König, Koch & Beetz (2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Nutzung der digitalen Informationen für Auswertungen und in der Bewirtschaftungsphase (S.V)</td>
</tr>
<tr>
<td>b. Ableitung aller technischen Zeichnungen aus dem Modell (S.5)</td>
</tr>
<tr>
<td>c. Einfachere Angebotserstellung durch Baufirmen und deren Abrechnung auf Basis des Modells (S.6-7)</td>
</tr>
<tr>
<td>d. Kollisionsprüfung möglich durch 3D Modell (S.26)</td>
</tr>
<tr>
<td>e. Mengenermittlung wird einfacher und genauer (S.26)</td>
</tr>
<tr>
<td>f. Arbeits- und Kommunikationsprozesse können verbessert werden (S.207)</td>
</tr>
<tr>
<td>g. Kosten- und Risikorelevante Entscheide können früher getroffen werden (S.265)</td>
</tr>
<tr>
<td>h. Beherrschung der Komplexität in frühen Planungsphasen (S.266)</td>
</tr>
<tr>
<td>i. Ableitung von Stück-, Massen- und Flächenlisten (S.266)</td>
</tr>
<tr>
<td>j. Konsistente Planungsunterlagen (S.266)</td>
</tr>
<tr>
<td>k. Verbesserte Kommunikation (S.266)</td>
</tr>
<tr>
<td>l. As-Built Modell spart Aufwand und Zeit im Betrieb (S.392)</td>
</tr>
<tr>
<td>m. Unterstützung der Eigentümer und Betreiber bei Ihren Aufgaben (S.394-395)</td>
</tr>
<tr>
<td>Eastman, Teicholz, Sacks & Liston (2011)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>a. Increase building performance (S.151)</td>
</tr>
<tr>
<td>b. Reduce the financial risk (S.151)</td>
</tr>
<tr>
<td>c. Shorten project schedule (S.151)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>McGraw Hill Construction (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Better understanding of the proposed design (S.5)</td>
</tr>
<tr>
<td>b. Fewer problems during constructions (S.5)</td>
</tr>
<tr>
<td>c. More well-reasoned design (S.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bundesamt für Bauwesen und Raumentwicklung (BBR) (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Transparenz führt zu höherer Planungs-, Termin und Kostensicherheit (S.25)</td>
</tr>
<tr>
<td>b. Vereinfachtes Risikomanagement, Kontrolle Planungsqualität und Fertigungsprozesse (S.25)</td>
</tr>
<tr>
<td>c. Umfassende Gebäudeinformationen offen zugänglich und für viel nutzbar (S.25)</td>
</tr>
<tr>
<td>d. Frühzeitige belastbare Entscheidungsfindung (S.25)</td>
</tr>
<tr>
<td>e. Schnelles visuelles erfassen der Projektdokumentation, Prüfung mittels entsprechender Werkzeuge (S.25)</td>
</tr>
<tr>
<td>f. Untersuchung Energieeffizienz, Bauablaufplanung und Mängelverfolgung eindeutig nachvollziehbar (S.25)</td>
</tr>
<tr>
<td>g. Automatisierte Prozessunterstützung (S.25)</td>
</tr>
<tr>
<td>h. Bessere Verlinkung von Datenquellen, zielgerechte Übertragung von Informationen und Durchführung von Berechnungen (S.26)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bundesamt für Bauwesen und Raumentwicklung (BBR) (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Qualitätssteigerung der Planung (S.6)</td>
</tr>
<tr>
<td>b. Kostenreduktion für Planung und Ausführung (S.6)</td>
</tr>
<tr>
<td>c. Terminoptimierung des Planungsprozesses (S.6)</td>
</tr>
<tr>
<td>d. Rechtzeitiges treffen wichtiger Entscheide bereits in der Planungsphase (S.6)</td>
</tr>
<tr>
<td>e. Hohe Transparenz des Planungsprozesses (S.6)</td>
</tr>
<tr>
<td>f. Auswirkungen von Entscheiden auf die Planung sofort ersichtlich (S.6)</td>
</tr>
<tr>
<td>g. Nachtragspotenzial aus der Planungsphase wird gesenkt (S.6)</td>
</tr>
<tr>
<td>h. Verbesserter Vergabeprozesse (S.6)</td>
</tr>
<tr>
<td>i. Optimierung des Facility Managements und verlustfreie Überführung der Informationen in die Betriebsphase (S.6)</td>
</tr>
</tbody>
</table>

Tab. 1: Zusammenfassung Vorteile aus der Literaturrecherche
In der Literatur wird BIM mit verschiedenen Vorteilen in Verbindung gebracht. Hausknecht und Liebich (2016) sehen folgende Vorteile der Methodik BIM bei der Umsetzung von Hochbauprojekten:

a. „Transparenz: Konsolidierte BIM-Daten sind eine solide Entscheidungsgrundlage für Bauvorhaben. Struktur, Kosten und Termine werden aufgrund der BIM-Modelle allgemeinverständlich darstellbar, Planungsänderungen können klar kommuniziert und in ihrer Auswirkung auf Qualität, Kosten und Termine überprüft werden.“

b. „Zuverlässigkeit: Mit der kommunizierbaren Prüfung der Planung, wie Kollisionsprüfung, Mengenauszug, Bauablaufkontrolle und deren visueller Rückkopplung zum BIM-Modell, können eine hohe Kosten- und Termintreue garantiert werden.“

c. „Zusammenarbeit: Über das BIM-Koordinationsmodell können die verschiedenen Planungsdisziplinen im Sinne der integralen Planung auf Augenhöhe miteinander kommunizieren. Über BIM-gerechte Vertragsmodelle wird der partnerschaftliche Ansatz vertieft.“

d. „Einsparungspotenzial: Insbesondere bei der Bauausführung und im Betrieb entstehen Potenziale zur Kosteneinsparung, hierzu sind das Ausführungs- und Betreiberwissen früh in den Planungsablauf zu integrieren und die BIM-Daten sind entsprechend zu erweitern.“

e. „Lebenszykluskosten: Die vollständige Dokumentation des Bauvorhabens im BIM-Modell mit verlinkten Betriebsanleitungen ist der ideale Ausgangspunkt für das Facility Management, dessen Kosten bereits in der Planung optimiert werden können“.

f. „Nachhaltigkeit: Nachhaltigkeitsnachweise und Zertifikate beruhen zu einem großen Teil auf Daten, die in einem BIM-Modell ohnehin für andere Aufgaben, wie die Mengenermittlung für Kostenberechnung, enthalten sind. Deren leichte Auswertung erlaubt frühzeitige Nachhaltigkeitsuntersuchungen und damit die Optimierung und nicht nur die Zertifizierung.“

g. „Bürgerbeteiligung: Das BIM-Modell ist für Nichtfachleute aussagekräftiger als Pläne, Entwurfsideen sind besser vermittelbar, Änderungswünsche in ihren Auswirkungen genauer darstellbar. Dies ermöglicht eine bessere Mitsprache und Entscheidungen der Auftraggeber, mitentscheidender Gremien aber auch der involvierten Bürger.“
h. „Branchenimage: Das Bauwesen, im Wettstreit mit anderen Branchen, hat derzeit keine besondere Anziehungskraft für die Kreativen und Innovativen der nachwachsenden Generation, neue digitale und vernetzte Mediennutzung führt zu attraktiven zukunftsorientierten Berufsbildern.“
(S. 52)
i. „Der Hauptvorteil von BIM für den Bauherrn entsteht durch die umfassenden, offen zugänglichen und von vielen nutzbaren Bauwerksinformationen.“
(Hausknecht & Liebich, 2016, S. 53)

Gemäß Borrmann, König, Koch & Beetz (2015) hat die Methodik BIM folgende Vorteile bei der Umsetzung von Hochbauprojekten:

a. „Wichtige Vorteile liegen in der direkten Verwendbarkeit der Modelle für unterschiedlichste Berechnungs- und Analysewerkzeuge sowie in der nahtlosen Weiternutzung der digitalen Informationen für die Bewirtschaftungsphase.“
(S. V)
b. „Alle technischen Zeichnungen, einschließlich der verschiedenen Ansichten, Grundrisse und Schnitte werden direkt aus dem Modell abgeleitet und sind damit automatisch untereinander widerspruchsfrei.“
(S. 5)
c. „Die Bereitstellung eines digitalen Gebäudemodells im Rahmen der Ausschreibung erleichtert den Baufirmen die Aufwandsermittlung für die Angebotsabgabe und ermöglicht später die präzise Abrechnung.“
(S. 6-7)
d. „Mithilfe des 3D-Modells ist das Durchführen von Kollisionsanalysen möglich.“
e. „Ein 3D-Modell erlaubt eine präzise Mengenermittlung (engl. Quantity Take-Off), da Volumen und Oberflächen direkt berechnet werden können.“
(S. 26)
f. „Viele ihrer Arbeits- und Kommunikationsprozesse können durch die einheitlich strukturierten Bauwerksinformationsmodelle direkt verbessert werden.“
(S.207)
g. „Durch den Einsatz von BIM können kosten- und risikorelevante Entscheidungen bereits in frühen Phasen getroffen werden.“
(S. 265)
h. „Das Potenzial der BIM-Methodik kann die Beherrschung der Komplexität in frühen Planungsphasen, insbesondere im Dialog mit Auftraggebern und Fachplanern, unterstützen.“
i. „[…] direkte Ableitung von Stück-, Massen- und Flächenlisten, […]“
j. „[…] konsistente Planungsunterlagen (Planungsmodelle) […]“
k. „[…] Kommunikation mit Fachplanern und Klienten mittels 3D-Modellen.“
(S.266)
l. „Ein Modell, das den aktuellen Gebäude- und Anlagenzustand widerspiegelt, spart Zeit und Aufwand bei Wartung, Instandhaltung, Instandsetzung, Umbau- und Sanierung.“ (S. 392)

m. „Die mit dem Arbeiten nach BIM entstehenden Gebäudemodelle unterstützen Eigentümer und Betreiber durch die Vernetzung der Bau- und Anlagenteile mit weiterführenden Objektinformationen bei der Wahrnehmung ihrer Aufgaben im Rahmen der Betreiberverantwortung.“ (Borrmann, König, Koch, & Beetz, S. 394-395)

Laut Eastman, Teicholz, Sacks & Liston (2011) hat die Methodik BIM folgende Vorteile bei der Umsetzung von Hochbauprojekten:

a. “Increase building performance through BIM-based energy and lighting design and analysis to improve overall building performance.”

b. “Reduce the financial risk associated with the project using the BIM model to obtain earlier and more reliable cost estimates and improved collaboration of the project team”

c. “Shorten project schedule from approval to completion by using building models to coordinate and prefabricate design with reduced field labor time” (Eastman, Teichholz, Sacks, & Liston, S. 151)

Gemäss McGraw Hill Construction (2014) hat die Methodik BIM bei der Umsetzung von Hochbauprojekten folgende Vorteile:

a. „BIM Visualization Enables a Better Understanding of the Proposed Design. “

b. „There Are Fewer Problems During Construction Related to Design Errors, Coordination Issues or Construction Errors.”

c. „BIM Analysis and Simulation Capabilities Produce a More Well-Reasoned Design.” (McGraw Hill Construction, S. 5)

Laut dem Bundesamt für Bauwesen und Raumentwicklung (BBR) (2013) werden folgende Vorteile aufgeführt:

a. „[…] höhere Planungs-, Termin- und Kostensicherheit, die durch die Transparenz über den gesamten Lebenszyklus eines Bauwerks entsteht.”

b. „Es vereinfacht das Risikomanagement und ermöglicht die Planungsqualität und die industriellen Fertigungsprozesse besser zu kontrollieren.”
c. „Der Hauptvorteil von BIM liegt für den Auftraggeber in den umfassenden, offen zugänglichen und von vielen nutzbaren Gebäudeinformationen.“

d. „Diese qualitativ hochwertigen und konsistenten Planungsdaten ermöglichen frühzeitige und belastbare Entscheidungsfindungen.“

e. „Ein Bauwerksmodell ermöglicht den Umfang der vorliegenden Projektdokumentation zusätzlich visuell schnell zu erfassen und mit den entsprechenden Werkzeugen nachvollziehbar zu prüfen.“

f. „An diesem Gebäudemodell lässt sich die Untersuchung der Energieeffizienz, die Bauablaufplanung oder die Mängelverfolgung eindeutig nachvollziehen.“

g. „[…] Möglichkeiten gegeben, Prozesse durch Automatisierung zu unterstützen.“ (S.25)

h. „Durch die hohe Anzahl an Informationen und die umfassende Bauwerksbeschreibung können unterschiedliche Datenquellen nun besser verlinkt, Informationen zielgerecht übertragen und Berechnungen durchgeführt werden.“ (Bundesamt für Bauwesen und Raumentwicklung (BBR), 2013, S. 26)

Aus Sicht des Bundesamt für Bauwesen und Raumentwicklung (BBR) (2014) werden folgende Vorteile aufgeführt:

a. „Qualitätssteigerung bei der Planung, insbesondere im Hinblick auf die Kollisionsvermeidung,“

b. „Reduzierte Kosten für Planung und Ausführung,“

c. Terminoptimierter Planungsprozess,“

d. „Rechtzeitiges Treffen wichtiger Entscheidungen, bereits in der Planungsphase,“

e. „Hohe Transparenz des Planungsprozesses,“

f. „Auswirkung planerischer Entscheidungen auf Kosten und Termine werden sogleich sichtbar,“

g. „Reduzierung des aus der Planung stammenden Nachtragspotentials,“

h. „Verbesserte Vergabeprozesse,“

i. „Verlustfreie Überführung aller Informationen in die Betreiberphase/Optimierung des Facility Managements.“ (Bundesamt für Bauwesen und Raumentwicklung (BBR), 2014, S. 6)
2.2.5 Übersicht der Nachteile gemäss Literaturrecherche

In der Tabelle 2 wurden die recherchierten Nachteile der Methodik BIM zusammengefasst. Die entsprechende Textpassage aus den unterschiedlichen Quellen sind im anschliessenden Text beschrieben.

<table>
<thead>
<tr>
<th>Borrmann, König, Koch & Beetz (2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Komplexität der Funktionalität und Begrenzungheit von Bauteilen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bundesamt für Bauwesen und Raumentwicklung (BBR) (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Unterschätzung der durch BIM hervorgerufenen Veränderung (S.28)</td>
</tr>
<tr>
<td>b. Eingeschränkter Wettbewerb durch spezifische Software (S.28)</td>
</tr>
<tr>
<td>c. BIM Leistungen nicht vertraglich verankert (S.28)</td>
</tr>
<tr>
<td>d. 2D-Richtlinien schliessen zum Teil BIM Lösungen aus (S.28)</td>
</tr>
<tr>
<td>e. Erwartungen zu hoch (S.28)</td>
</tr>
<tr>
<td>f. Fehlende Erfahrung (S.29) führt zu:</td>
</tr>
<tr>
<td>- Kalkulation Arbeitsaufwand nicht möglich</td>
</tr>
<tr>
<td>- Ausschöpfung technischer Möglichkeiten nicht möglich</td>
</tr>
<tr>
<td>g. Neuaufbau Datenmodell (S.29) wegen:</td>
</tr>
<tr>
<td>- Änderung der Zielsetzung</td>
</tr>
<tr>
<td>- Hinauszögern von Entscheiden</td>
</tr>
<tr>
<td>h. Modellauswertung wegen unstrukturierter Daten nicht möglich (S.29)</td>
</tr>
<tr>
<td>i. Durchgängigkeit wird durch Teilbeauftragung gehemmt (S.29)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bundesamt für Bauwesen und Raumentwicklung (BBR) (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Fehlende Regularien (S.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bundesamt für Bauwesen und Raumentwicklung (BBR) (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Höherer Planungsaufwand. (S.7)</td>
</tr>
<tr>
<td>b. Hoher Schulungsaufwand (S.7)</td>
</tr>
<tr>
<td>c. Anschaffung neuer EDV-Lösungen (S.7)</td>
</tr>
<tr>
<td>d. Zusätzliche Managementkapazität für die Überwachung des Modells (S.7)</td>
</tr>
<tr>
<td>e. Volle Transparenz in Bezug zu Planungsentscheidungen (S.7)</td>
</tr>
<tr>
<td>f. Änderung der Wettbewerbsstrukturen und Prozesse (S.7)</td>
</tr>
<tr>
<td>g. Anwendungsprogramme noch nicht technisch ausgereift und fehlende Marktstandards (S.7)</td>
</tr>
</tbody>
</table>

Tab. 2: Zusammenfassung Nachteile aus der Literaturrecherche
Gemäss Borrmann, König, Koch & Beetz (2015) hat die Methodik BIM folgende Nachteile bei der Umsetzung von Hochbauprojekten:

a. „Ein häufig genannter Kritikpunkt an BIM-Systemen ist die Komplexität der Funktionalität und die gleichzeitige Begrenztheit bei der Auswahl an Bauteilen.“ (Borrmann, König, Koch, & Beetz, S. 267)

Die Methodik BIM hat bei der Umsetzung von Hochbauprojekten aus Sicht des Bundesamt für Bauwesen und Raumentwicklung (BBR) (2013) folgende Nachteile:

a. „Wissen und richtiges Verständnis für BIM und der Einfluss von BIM wird unterschätzt: Den Anwendern ist nicht bewusst, welche Faktoren in der Projektabwicklung durch BIM beeinflusst werden. BIM betrifft alle Projektbeteiligten.“

b. „Projektbeginn und Vertragsgrundlagen bzgl. BIM: Vorgaben werden nicht vollständig gelesen und verstanden. Softwarespezifische BIM-Richtlinien beschränken den Wettbewerb.“

c. „Verträge: BIM Leistungen werden nicht von Beginn an verankert.“

d. „2D Richtlinien: Traditionelle CAD-Pflichtenhefte, welche auf ältere CAD-Werkzeuge ausgelegt sind, schließen häufig den Einsatz von unterschiedlichen BIM-Lösungen aus. Das ist früh mit dem Auftraggeber zu klären bzw. durch ihn zu korrigieren.“

e. „Erwartungsmanagement: Die Erwartungen an das Team und die Werkzeuge werden zu hoch gesetzt.“ (S. 28)

f. „Fehlende Erfahrung: Aufgrund fehlender Erfahrung und Richtlinien kann der Arbeitsaufwand nicht eingeschätzt oder kalkuliert werden. Das notwendige Wissen (Software, Prozesse) fehlt, so können die technischen Möglichkeiten nicht bewertet und genutzt werden. Häufiger Personalwechsel unterstreicht diesen Aspekt.“

g. „Hinauszögern und häufiges Ändern von wichtigen Entscheidungen und Zielsetzungen: Aufgrund von willkürlichen Entscheidungen durch den Auftraggeber oder Auftragnehmer kann es notwendig sein, ein Datenmodell komplett neu aufzubauen.“

h. „Diszipliniert arbeiten: Wenn Modelle ausgewertet werden sollen, sind alle notwendigen Informationen von Beginn an strukturiert einzuarbeiten. Aufgrund fehlender Angaben durch einen fehlerhaften Modellaufbau, ist eine strukturierte Modellauswertung nicht möglich.“
i. „Unterschätzung der Aufwandsvorverlagerung: Teilbeauftragung, besonders der ersten Leistungsphasen, hemmt die Durchgängigkeit und somit die Vorteile von Methodik BIM.“ (Bundesamt für Bauwesen und Raumentwicklung (BBR), S. 29)

Nachteile der Methodik sind gemäß Bundesamt für Bauwesen und Raumentwicklung (BBR) (2011) folgende:

a. „[…] fehlende Regularien auf die sich BIM Vertragsvereinbarungen beziehen können (anerkannte BIM Richtlinien und Vertragsmuster, die gemeinschaftliches Handeln gemäß der BIM Methodik fördern),[…]“ (Bundesamt für Bauwesen und Raumentwicklung (BBR), 2011)

Das Bundesamt für Bauwesen und Raumentwicklung (BBR) (2014) sieht folgende Nachteile der Methodik BIM:

a. „Höherer Planungsaufwand vor allem in frühen Projektphasen.“

b. „Schulungsaufwand bei allen Beteiligten.“

c. „Notwendigkeit der Anschaffung neuer EDV-Lösungen.“

d. „Zusätzliche Managementkapazität erforderlich, um die Überwachung des ordnungsgemäßen Funktionierens des Datenmodells und der ordnungsgemäßen Mitwirkung aller Beteiligten bei der Umsetzung der Methodik BIM sicherzustellen“

e. „Volle Transparenz, wenn Planungsentscheidungen nicht oder zu spät getroffen werden.“

f. „Anpassungsprozesse für Planungsbeteiligte und mögliche Änderung von Wettbewerbsstrukturen.“

g. „Technisch noch nicht abschließend ausgereifte Anwendungsprogramme und Fehlen von Marktstandards.“ (Bundesamt für Bauwesen und Raumentwicklung (BBR), 2014, S. 7)
3. Empirische Untersuchung

3.1 Methodischer Ansatz

Anhand einer strukturierenden Inhaltsanalyse nach Mühlfeld (Mühlfeld, Windolf, Lampert, & Krüger, 1981, S. 325-352) sollen die Einschätzungen zur Methodik BIM aus Sicht der Experten in Erfahrung gebracht werden. Im Gegensatz zu anderen Auswertungsverfahren wird hier nicht jeder Satz der Transkription ausgewertet. Aus den geführten Interviews werden die Themenbereiche identifiziert werden, welche den einzelnen Fragen des Fragebogens / Leitfadens zugeordnet werden können. Die Auswertung erfolgt nach dem folgenden mehrstufigen Verfahren:

Stufe 1: Markieren von Antworten, welche sich auf den Leitfaden beziehen.
Stufe 2: Einordnung der Antworten in das Kategorienschema und gegebenenfalls Erweiterung des Kategoriensystems.
Stufe 3: Herstellung einer inneren Logik: Welche Zusammenhänge und Widersprüche lassen sich finden?
Stufe 4: Text zur inneren Logik erstellen.
Stufe 5: Nach veranschaulichenden Zitaten suchen und zum Text ergänzen.
Stufe 6: Bericht schreiben.

Werden in dieser Arbeit Aussagen der Experten beispielhaft zitiert, dann wird dies wie folgt ausgeführt:

„Ich verstehe unter BIM eine prozessgesteuerte Arbeits- / Denkweise die verbunden ist mit dem Einsatz von Software. Wobei die Software eher sekundär ist, primär ist die Arbeitsweise.“ (04-Z62)

Die entsprechend zitierte Aussage ist im Transkript des Interviews 04 in der Zeile 62 zu finden.
3.2 Aufbau Fragenkatalog Interview

Der für die Interviews aufgebaute Fragenkatalog, welcher auch gleichzeitig den Leitfaden darstellt, ist in 5 Teile strukturiert. Das Interview besteht aus offenen Fragen und einem Fragebogen. Im ersten Teil wird an Hand einer Kurzumfrage zur Person geklärt, welchen fachlichen Hintergrund der Experte besitzt und in welcher Funktion er im Unternehmen tätig ist. Im zweiten Teil werden das Verständnis zur Methodik BIM und die damit verbundene Auseinandersetzung mit der Thematik beleuchtet. Der dritte Teil befasst sich mit der Erfahrung des Experten mit der Methodik BIM und dessen Vor- und Nachteilen bei der Umsetzung von Hochbauprojekten und in den damit verbundenen Hauptphasen. Im vierten Teil des Interviews werden die in der Literatur bereits beschriebenen Vor- und Nachteile aus Sicht des Experten anhand eines Fragebogens beurteilt. Dem Experten werden diese Fragen in Form einer Aussage dargelegt die er, wenn zutreffend, mit Ja oder Nein beantworten kann. Bei einer bestätigenden Haltung hat der Experte die Möglichkeit, die Aussage als Vor- oder Nachteil einzustufen. Um die Aussage abschliessend bewerten oder untermauern zu können hat der Experte, unter der Rubrik Anmerkungen, bei Bedarf die Möglichkeit seine Einschätzung zu erläutern. Somit kann anhand einer Diskussion zwischen dem Experten und den Interviewer ein präziseres Bild erzeugt werden.

3.3 Auswahl der Experten

Die ausgewählten Interviewpartner und Ihre Funktionen im Unternehmen sind hier aufgelistet:

01 Bruno Jung, Gesamtprojektleiter BB12, Direktion Infrastruktur, Inselspital Bern
02 Dr. Lisa Koller, Bereichsleiterin Life cycle Management, Reso Partner
03 Urs Kamber, Kantonsbaumeister, Baudirektion, Hochbauamt Kanton Zug
04 Claudio Däscher, Projektleiter Entwicklung, Näesch Development
05 Karin Voigt, Bereichsleiterin Construction & Facility Management, Wincasa
06 Elisabeth Ager, Projektleiterin Bauherrentreuhand, Wincasa
07 Oliver Lanter, Universitäts Spital Zürich (USZ)
Dr. Carsten Druhmann, Schwerpunktleitung Facility Management digital, ZHAW Life Sciences und Facility Management

Marc Lyon, Leiter Development Deutschschweiz, Implenia Schweiz

Prof. Dr. Christian Stoy, Institutsleitung Institut für Bauökonomie, Universität Stuttgart

Wie auf der Abbildung 10 gezeigt haben die meisten Experten, sieben an der Zahl, einen Abschluss in Architektur, ein Experte hat einen Abschluss in Bauingenieurwesen, einer als Elektrotechniker und einer in Prozessmanagement.

Abbildung 10: Übersicht zur Ausbildung der Experten

Abbildung 11: Übersicht zur Erfahrung der Experten im Bausektor

Abbildung 12: Übersicht Rolle der Experten im Bausektor

Abbildung 13: Übersicht Rolle der Experten im Unternehmen

3.4 Planung und Durchführung

Interviews, die in den Räumlichkeiten der Burckhardt+Partner AG in Zürich durchgeführt wurden, erfolgten alle anderen am Arbeitsort des jeweiligen Experten. Die Dauer der einzelnen Interviews variierte zwischen 50 Minuten und 1 Stunde und 19 Minuten. Im Nachgang wurden die Interviews, wie im Kapitel 3.1 beschrieben, transkribiert und ausgewertet.
4. Auswertung der Experteninterviews

Die Auswertung der Experteninterviews erfolgt im ersten Schritt anhand der Struktur des Fragebogens / Interviewleitfadens. Anschliessend wurden die Antworten der einzelnen Fragestellungen neu geordnet und wo möglich in Themenbereiche zusammengefasst.

4.1 Verständnis / Auseinandersetzung der Experten mit der Methodik BIM

4.1.1 Verständnis

Aus Sicht der Experten ist BIM eine Methodik bestehend aus einem digitalen Gebäudemodell, welches alle Informationen und Daten eines Bauwerks enthält, und einer neuen Arbeits- und Denkweise die bei der Umsetzung von Hochbauprojekten angewendet wird.

„Ich verstehe unter BIM eine prozessgesteuerte Arbeits- / Denkweise die verbunden ist mit dem Einsatz von Software. Wobei die Software eher sekundär ist, primär ist die Arbeitsweise.“ (04-Z62)

„BIM ist sicherlich eine Methodik und führt aktuell zu einem Paradigmenwechsel in der Immobilienwirtschaft. In die Richtung des digitalen planens, bauens und betreibens, das ist uns ganz wichtig, eben über die gesamte Wertschöpfungskette über alle Lebenszyklusphasen hinweg die digitale Transformation zu vollziehen. Deswegen ist BIM völlig unbenommen von einzelnen Software Applikationen oder von einzelnen Aufgaben, die damit wahrgenommen werden, wie z.B. Kollisionsprüfung; es geht wirklich um die komplette Integration der verschiedenen Disziplinen und Stakeholder in allen relevanten Prozessen.“ (08-Z62)

4.1.2 Auseinandersetzung

Fünf Experten haben, wie auf Abbildung 14 gezeigt, mit der Methodik BIM theoretisch wie auch praktisch zu tun. Ein Experte nur praktisch und vier Experten nur theoretisch.

Abbildung 14: Übersicht zur Auseinandersetzung mit BIM

Abbildung 15 zeigt auf, dass sich drei Experten seit 1-2 Jahren mit der Methodik BIM beschäftigen, drei Experten seit 2-5 Jahren und vier Experten setzen sich damit seit 5-10 Jahren auseinander.

Abbildung 15: Erfahrung mit BIM

Innerhalb des Zeitraums seit dem sich die Experten mit der Methodik BIM auseinandersetzen, haben sechs davon 2-5 Projekte in Planung und Umsetzung, zwei davon 1 Projekt in Planung und Umsetzung und zwei Experten haben noch kein Projekt mittels BIM in Ihrer Tätigkeit bearbeitet wie auf Abbildung 16 dargestellt.

Abbildung 16: Realisierte Projekte mittels BIM
4.2 Erfahrungen der Experten mit der Methodik BIM

„[...] Austausch mit allen Planern in der BIM Session [...]“. (02-Z113)

„[...] optimales Visualisierungstool was die Zusammenarbeit enorm vereinfacht.“ (06-Z113)

Ein weiterer Aspekt ist die erhöhte Transparenz, die es den Bauherrn ermöglicht mit einfachen Massnahmen die Planung des Generalplanerteams oder der einzelnen Fachbereiche zu überprüfen, um bei Bedarf in den Prozess frühzeitige einzugreifen. Somit können Terminverzögerungen in den meisten Fällen verhindert werden.

„[...] da der Bauherr im Prozess erkennen kann ob ein Fachplaner seine Leistung nicht erbringt. Früher wurde dies erst zu spät erkannt am Abgabetermin.“ (01-Z115)

Aus Sicht der Experten wird auch die frühzeitigere Präzisierung des Projekts als Vorteile wahrgenommen. Mit der Methodik BIM setzt sich der Bauherr viel früher mit den für den Betrieb notwendigen Fragestellungen auseinander. Somit können spätere Projektanpassungen oder Projektänderungen reduziert werden.

„[...] beschäftigen wir uns als Bauherr viel früher mit betrieblichen Themen.“ (01-Z146)

„[...] zuvor Gedanken macht und nicht nur auf Seite des Planers sondern auch des Bauherrn.“ (10-Z115)
Eine der größten Herausforderungen ist die noch geringe Erfahrung mit der Methodik BIM in der Branche. Dies zeichnet sich auf verschiedensten Ebenen ab. Beginnend bei der Definition was das BIM-Modell leisten soll, bis hin zu den Schnittstellen zwischen den einzelnen Softwaretypen der Planer und Spezialisten. Planer müssen sich zurzeit noch das fehlende Know-how selbst erarbeiten oder externe Berater hinzuziehen.

„Die Herausforderung sind immer noch die Schnittstellen.“ (06-Z117)

„Nachteil ist, dass natürlich die Erfahrungen bei der Bearbeitung gemacht werden nicht zuvor, learning by doing.“ (03-Z129)

Damit einhergehend sind Diskussionen bei den Vertragsverhandlungen mit Planern, da noch unklar ist, inwieweit BIM eine Grundleistung darstellt oder ob dies als Zusatzleistung honoriert werden muss.

„Am Anfang hat man die Diskussionen, ob es für die Planer Mehrkosten verursacht oder nicht.“ (05-Z116)

Mit der Implementierung der Methodik BIM ist am Anfang ein höherer Aufwand in Bezug auf das Projektmanagement und die Kommunikation unter den Beteiligten notwendig, um einheitliche Strukturen einzuführen, mit der das Projekt abgewickelt werden kann (02-Z137). Es gilt sowohl die Form des Austausches von Dateien als auch Informationen zu definieren und zu klären, ob open oder closed BIM zum Einsatz kommen (02-Z135). Eine zusätzliche Herausforderung bildet zur Zeit noch immer die Leistungsfähigkeit der Software in Bezug auf die Überprüfung und Optimierung des Modells. Einzelne Software-Produkte sind zum Teil noch nicht so ausgereift, dass sie mit geringem Aufwand verlässliche Resultate liefern (08-Z116).

4.3 Beweggründe des Bauherrn für die Anwendung der Methodik BIM

Im Zuge der Durchführung der Interviews konnten folgende Erkenntnisse gewonnen werden, wodurch einzelne Bauherrentypen mittlerweile eine Umsetzung von Hochbauprojekten mit der Methodik BIM in Betracht ziehen. Aus Sicht öffentlicher Auftraggeber, wie z.B. dem Kanton stehen hierbei unter anderem die Mitarbeiterentwicklung oder das Schritthalten mit der Baubranche im Vordergrund.

„[...] öffentliche Einrichtung auch zeigen, dass wir up to date sind, um unseren Planern auf Augenhöhe entgegentreten zu können. Somit können wir auch in Zukunft unsere Projekte erfolgreich realisieren mit der neuen Methode.“ (03-Z120)

„Beim USZ im konkreten Fall ist das Grossprojekt der Gesamtspitalerneuerung mit keiner anderen Methode stemmbar ohne die Hilfe von digitalen Prozessen.“

(07-Z331)

„Inzwischen sage ich aber, dank dem grossen Projekt waren wir gezwungen die Zeit und Energie zu investieren, bei einem kleineren Projekt wäre es wohl einfacher gewesen wieder auf die konventionelle Ausführung zurück zu gehen, da der Aufwand der Initialisierung sehr gross war für den Generalplaner und uns.“

(01-Z262)

Aus Sicht des Entwicklers verhilft das BIM-Modell und die damit einhergehende, genauere Datengrundlage zu einer höheren Kosten-, Qualität- und Terminsicherheit.

„Wir wollen das natürlich immer, da wir eine Kostensicherheit haben müssen.“

(09-Z1829)

Schlussfolgend hieraus lässt sich feststellen, dass für alle Bauherrenarten ein funktionierendes Gebäude, welches alle definierten Anforderungen erfüllen kann, ein zentrales Anliegen ist. Hierbei kann die Methodik BIM einen wesentlichen Beitrag leisten.

4.4 Einfluss der Methodik BIM auf die Umsetzung von Hochbauprojekten

„Langfristig ja, [...] da die am Projekt Beteiligten noch stärker eine einheitliche Sprache sprechen.“

(05-Z165)
„[...] verbesserten Kommunikation zwischen den Planern und den Bauherrn.“ (07-Z123)

„Dies erleichtert die Kommunikation mit dem Nutzer extrem, da die “Übersetzung des 2D-Plans“ entfällt bei Personen die sich dies nicht gewohnt sind.“ (02-Z178)

„[...] Planung auch Laien tauglicher“ (07-Z133)

„Es wird uns als Bauherr leichter Fall den Nutzer in den Prozess zu integrieren [...]“ (07-Z133)

„[...] Kollisionsprüfung kann die Anzahl der Projektfehler in der Planung- und der Ausführungsphase verringert werden.“ (09-Z143)

„[...] frühzeitige Bestimmung von Fehler und die dadurch einhergehende Reduktion von Anpassungen auf dem Bau die Qualität wesentlich erhöht.“ (05-Z166)

„[...] Koordination institutionalisiert [...] Planer sind gezwungen zu einem früheren Zeitpunkt die Koordination zu machen [...]“ (03-Z152)

Generell wird die Verbesserung der Prozesse durch die Methodik BIM angeführt, da durch die Methodik BIM frühzeitigere Entscheide und präzisere Vorgaben eingefordert werden müssen.

„Aber ich denke die Sensibilisierung, gerade für das Thema Planung der Planung und Prozessthemen, [...] viel schneller zum Tragen.“ (10-Z168)

4.5 Vor- und Nachteile der Methodik BIM aus Sicht der Experten in den Hauptphasen eines Hochbauprojektes

Bei der Auswertung wurde erkannt, dass gewisse Vor- und Nachteile der Methodik BIM nicht nur in einzelnen Phasen auftreten, sondern phasenübergreifend sind. Ein immer wieder diskutiertes und auch kritisiertes Thema betrifft die verbesserte Kommunikation zwischen allen Projektbeteiligten, die auch schon unter dem Punkt 4.4 beschrieben wurde. Im Speziellen ist in diesem Zusammenhang die Durchgängigkeit der Informationen zu
erwähnen. Dies erleichtert allen Parteien den Einstieg in das Projekt, egal in welcher Phase diese hinzugezogen werden.

„[...] hilft das Modell über die einzelnen Phasen hinweg einfacher zu kommunizieren.“ (07-Z272)

„Bei jeder neuen Schnittstelle oder neuem Partner die hinzukommen spricht man immer über das gleiche.“ (07-Z273)

„[...] höhere Transparenz, Planung findet miteinander statt und Konflikte werden bereits beim Bearbeiten erkannt [...]“. (07-Z208)

„Der ganze Planungs- und Entscheidungsprozess wird strukturiert, vieles muss früher entschieden werden was unnötige Runden verhindern kann.“ (03-Z166)

„Prozesse beschleunigt, die Fehlerquote verringert und die Behebung der Fehler schneller verläuft und auch stattfindet.“ (08-Z162)

Die Methodik BIM verbessert nachweislich die Planungsqualität (Siehe auch Punkt 4.4). Anhand des Modells lassen sich unter anderem die Zugänglichkeit einzelner Installationen für die spätere Wartung und Reparatur besser planen. Mit dem Übereinanderlegen einzelner Fachmodelle können die einzelnen Planer z.B. einfacher erkennen, wo noch Differenzen in der Planung bestehen und diese ausräumen. Um eine höhere Planungsqualität und Planungstiefe erreichen zu können, zielt die Methodik BIM auf eine frühzeitige Herbeiführung von Entscheiden durch den Bauherrn ab.
„[...] viel konkreter wenn alle Ihre Fachmodelle direkt übereinanderlegen und dadurch viel besser verstehen wo der andere Fachplaner ein Problem hat. (07-216)

„[...] verbesserte und vereinfachte Koordination der Gewerke in einer früheren Phase.“ (09-Z175)

Ein offensichtlicher Nachteil ist zurzeit noch die mangelnde Erfahrung der Projektpartner in allen Lebenszyklusphasen eines Gebäudes (Siehe auch Punkt 4.2). Dieser temporäre Zustand wird sich mittel- bis langfristig durch die zunehmende Akzeptanz und Erfahrung der Beteiligten egalisieren. Markant zeigt sich dies unter anderem bei der Auswahl von Planern, Fachplanern, Spezialisten und Unternehmen. Hier gibt es noch wenige die mit der Methodik BIM bereits Projekte realisiert haben.

„Die Problematik hierbei ist, dass noch nicht alle Unternehmen fähig sind mit dem Modell arbeiten zu können.“ (01-Z214)

„[...] Problem, dass man erst jemanden finden muss der damit arbeiten kann auf der Seite des Unternehmers.“ (10-Z237)

„Unklarheiten bei der Frage welches BIM ist zu verwenden (Open oder closed BIM).“ (02-Z256)

Unumgänglich ist in allen Phasen die Überprüfung und Konsolidierung aller Daten und Informationen, die im Modell als Grundlage für die Planung, Erstellung und den Betrieb des Gebäudes hinterlegt werden.

Weitere Vor- und Nachteile, die konkret einzelnen Phasen zugeordnet werden können, sind unter den Punkten 4.5.1 - 4.5.4 beschrieben.

4.5.1 Projektinitiierungsphase
Aus den Interviews geht interessanterweise hervor, dass die Methodik BIM in der Projektinitiierungsphase noch am wenigsten genutzt wird, im Vergleich zu allen anderen Phasen. Dies liegt unter anderem daran, dass es noch sehr wenig Erfahrungswerte gibt.

„Ich glaube, dass in dieser Phase die Thematik noch nicht so bekannt ist, dass man auch hier schon den digitalen Schritt gehen kann.“ (08-Z151)

„Die meisten Projekte in der Schweiz werden noch standardmässig begonnen.“ (08-Z144)

„Strategien und überhaupt die BIM-Ziele zu definieren für was wir das Modell nutzen wollen.“ (07-Z178)

Entgegen der vorhanden Meinung bringt die Methodik BIM auch in der Initiierungsphase Vorteile mit sich, wie z.B. die frühzeitige Auseinandersetzung mit der Fragestellung „was braucht es“ (02-Z168) für die erfolgreiche Umsetzung des Projektes. Sind die bestehenden Prozesse und bewährten Strukturen und Abläufe noch sinnvoll unter der neuen Methode oder müssen diese überarbeitet werden.

„Ich glaube dadurch, dass BIM ein neues Werkzeug oder Methode ist, geht man mit der Fragestellung offener um und überlegt sich genauer wie man damit umgehen will.“ (02-Z170)

Aus Sicht der Experten birgt die Methodik BIM in dieser Phase noch grosses Potenzial. Anhand der rechtlichen Vorgaben können parametrische Modelle erstellt werden, die unterschiedliche Szenarien abbilden, wie sich die Varianten z.B. in den Städtebau eingliedern oder welche die optimale Ausnutzung einer Parzelle ist.

„Ich denke da ist noch ein grosses Potenzial vorhanden, wenn man in Programme die Parameter eingibt und auf dieser Basis erste Resultat auf Knopfdruck, innerhalb von kurzer Zeit, erhält.“ (04-Z140)

„Es gibt ja das sogenannte Easy-BIM oder Smart-BIM womit man die Volumetrie automatisiert generieren kann um das Maximum an Fläche realisieren zu können auf einem Baufeld.“ (05-Z173)

Die genannten Nachteile in der Projektinitierungsphase sind unter anderem die hohe Erwartung an die Methodik BIM. Mit der Methodik BIM sollen auf lange Sicht
Bauprojekte schneller, günstiger und qualitativ besser werden (07-Z357). Dies kann allerdings erst eintreten, wenn alle anfänglichen Schwierigkeiten und Fragestellungen beseitigt und die Prozesse standardisiert sind. Bis dahin wird der Vorteil aus der Optimierung der Prozesse durch den höheren Aufwand für die Einarbeitung in die Methodik aufgehoben. Ein durchaus bestehendes Risiko ist die Gefahr, dass aufgrund des genauer und einfacher verständlichen Modells, Themen in den Fokus rücken die im konventionellen Prozess erst in einer späteren Phase gelöst oder bearbeitet werden.

„In der frühen Phase besteht, wie gesagt, immer die Gefahr, dass man darin verharrt.“ (07-Z379)

„Weil wir noch in den Startlöchern sind, verlieren wir derzeit noch Zeit.“ (09-Z257)

4.5.2 Planungs- und Bewilligungsphase

„Wir erhoffen uns natürlich eine höhere und frühere Kostengenauigkeit.“ (06-Z152).

„Somit können wir am Anfang grösse Konflikte feststellen und lösen, mit geringem finanziellem Aufwand.“ (07-231)

Insbesondere hinsichtlich des Facility Management rückt die Langzeitbetrachtung des Gebäudes immer stärker in den Fokus, weil Betriebskosten ein wichtiges Bauherreninteresse darstellen.
„Wo die lange Nutzungsphase auch mit ins Kalkül gezogen wird, wenn das passiert, dass alle Stakeholder eine gemeinsame Zielsetzung finden dann ist das natürlich eine sehr vorteilhafte Bewegung.“ (08-Z167)

Als Nachteile in der Planungsphase wurde unter anderem die Verschiebung von Honoraranteilen in eine frühere Phase genannt, insbesondere wenn das Projekt abgebrochen wird.

„Und wenn ich natürlich das Projekt stoppe habe ich das Problem, dass ich mehr Honorar verbraten habe.“ (10-Z309)

Genannt wird auch der verstärkte Fokus auf die EDV, die durch die Anwendung der Methodik BIM weiter zunehmen wird (10-Z314). Hinsichtlich der Datenqualität muss zurzeit noch ein höherer Aufwand betrieben werden, um sicherzustellen, dass Daten im Modell richtig hinterlegt wurden.

„Da die Gefahr hoch ist, dass man aus Faulheit die Daten fälschlicherweise von anderen Projekten nicht anpasst.“ (08-Z249)

Für den nicht professionellen Bauherrn wird der Nutzen des Modells beschränkt sein, da er mit dem Modell in den meisten Fällen wenig anfangen kann.

„[…] Laien Bauherr hat keine Ahnung wie er mit dem Modell umgehen soll.“ (07-Z398)

Ein Risiko der starken Standardisierung von Bauteile und Arbeitsschritte kann die Einschränkung der Kreativität des Architekten bedeuten, da nur noch wenige Unternehmer Produkte anbieten, die nicht standardisiert sind.

„[…] Standardisierung von Bauteilen, da dadurch die Kreativität der Architektur und die Formenvielfalt verloren gehen kann […].“ (05-Z269)

In der Bewilligungsphase wird die Methodik BIM derzeit nur einseitig auf der Seite des Bauherrn und Planers genutzt. Die Bewilligungsinstanzen arbeiten noch nicht mit digitalen Modellen und der Methodik BIM. Vor- oder Nachteile der Methodik BIM kommen in dieser Phase nicht zum Tragen. Nichtsdestotrotz ist die Methodik BIM in der Kommunikation mit den involvierten Instanzen hilfreich.

„In der Bewilligungsphase ist der Nachteil, dass die Behörden noch nicht fähig sind mit dem Modell zu arbeiten.“ (07-Z391)
„[...] in dieser Phase noch nicht funktioniert und in den Prozess implementiert […]“. (05-Z276)

„[…]. Modell abgeben und die Bewilligung an Hand dessen erfolgt.“ (05-Z202)

4.5.3 Ausschreibungs- und Ausführungsphase

Bei der Ausschreibung sehen die Experten Vorteile, wenn aus dem BIM Modell die Devis oder Massenauszüge automatisch ausgezogen werden oder das Modell als Grundlage für die Erarbeitung des Angebots an den Unternehmer direkt weitergegeben werden kann, was voraussichtlich zu einer Reduktion der Ausmassfehler führen kann.

„Bestellungen werden anhand des Modells zum Teil schon ausgelöst (z.B. Schalungen, Betonmengen, etc.). (02-Z194)

Anhand genauerer Grundlagen kann der Unternehmer präziser kalkulieren und somit sein Risiko reduzieren und einen genaueren Preis offerieren. Dies könnte sich langfristig positiv auf die Angebotspreise auswirken.

„Daraus erhoffen wir uns ein genaueres Angebot.“ (01-Z210)

„[...] das Risiko des Unternehmers wird reduziert, da im Modell kaum Raum für Interpretation besteht […].“ (02-Z206)

„09-Z276: Falsche oder unpräzise Schnittstellen.“ (09-Z276)

Des Weiteren kann die Planqualität der 2D-Pläne darunter leiden, da sie direkt aus dem Modell generiert wurden (05-Z290).

Eine allgemeine Herausforderung in der Ausschreibungs- und Ausführungsphase ist die Frage, wie man alle Interessengruppen mit den richtigen Informationen bedienen kann, ohne das Modell mit zu vielen Daten zu überlasten.
„Wie kann man die Informationen harmonisieren, damit diese allen Stakeholder gerecht werden. (02-Z262)

In der Ausführungsphase gibt es durch den Einsatz der Methodik BIM weniger Änderungen und Diskussionen auf der Baustelle. Dies liegt zum einen an der genaueren Planung und zum anderen an der frühen Abstimmung aller Beteiligten in Bezug zu ihren Bedürfnissen. Die Meinung ist, wenn es doch zu Änderungen kommt, können diese schneller in die Planung übernommen werden.

„[…] Ausführungsphase weniger Diskussionen auf der Baustelle geführt werden, wo welche Leitung hinmuss und es gibt auch keine Auslegungsdiskussionen wie bei 2D Plänen, wer Recht hat.“ (01-Z223)

„[…] durch BIM sollte es weniger Änderungen geben in dieser Phase.“ (07-Z410)

„[…] Daten in eine Maschine einspeisen kann und diese alles automatisch produziert […]“. (05-Z221)

Durch die in den vorherigen Punkten beschriebenen Vorteile kann die Ausführung schneller erfolgen (06-Z171).

Der Nutzen des Modells ist derzeit noch stark auf die grossen Gewerke beschränkt, kleine Gewerke wie z.B. Gipserarbeiten oder Malerarbeiten profitieren auf der Baustelle nur bedingt vom Modell.

„[…] konventionelles Handwerk gefragt ist, da geht es noch eine Weile bis man Optimierung vornimmt.“ (05-Z226)

„Mit BIM to field bestünde die Möglichkeit genauere Revisionspläne zu erhalten.“ (06-Z202)

„[…] auf dem Weg zu einem as-built Modell.“ (08-Z203)

„[…] Ablauf her bei der Ausführung optimieren in dem man anhand des Modells die einzelnen Abläufe simuliert.“ (05-Z229)

„[…] wie der Bauablauf und die Bauprozesse im BIM-Modell visualisiert und geprüft werden.“ (02-Z193)

Was in der Ausführungsphase als Nachteil gesehen wird, ist der eigentliche Nutzen auf der Baustelle vor Ort. Es stellt sich die Frage, inwieweit die eigentliche Ausführung davon profitieren kann und welchen Nutzen das Personal davon hat.

„[…] der Nutzen auf der Baustelle durch das Personal vor Ort.“ (09-Z285)

4.5.4 Betriebsphase

„Zum heutigen Zeitpunkt können wir noch nicht sagen, ob die Optimierung wirklich zutrifft.“ (06-Z206)

„[…] wahrscheinlich auch am grössten im Vergleich zu den vorhergehenden Phasen. Gemacht wird aber noch am wenigsten.“ (10-Z291)
Als Vorteil in der Betriebsphase wird von den Experten unter anderem die zentrale Ablage aller Information im Modell gesehen. Dies erspart das Suchen der Informationen, wenn diese dezentral abgelegt werden.

„Sprich das Zusammensuchen der einzelnen Daten aus unterschiedlichen Dokumenten, wie in der konventionellen Planung, entfällt.“ (03-Z195)

Anhand des Modells kann im Betrieb die Suche nach Fehlern verkürzt werden. Die fehlerhafte Stelle kann im Modell lokalisiert und vor Ort zielgerichtet beseitigt werden (02-Z226).

Zudem ist vorstellbar, dass die in den Mietverträgen hinterlegten Flächen mit dem Modell direkt verknüpft werden.

„[...] Vermietbarer Fläche ein Bestandteil des Modells ist und die Mietverträge mit diesen verknüpft wären.“ (09-Z246)

„Mit einem Knopfdruck den Prozess abschliessen zu können ist derzeit noch Zukunftsmusik. (02-Z216)

Die heutigen Organisationen die sich mit dem Betrieb der Liegenschaften beschäftigen, sind mit dem Thema BIM noch nicht vertraut (02-Z290). Demzufolge muss hier eine verstärkte Auseinandersetzung mit der Methodik BIM erfolgen, damit der Betrieb ein ähnliches Niveau wie die Planung und die Ausführung erreicht (02-Z300).

„[...] dass im Betrieb auch noch das Know-how fehlt.“ (09-Z296)

Auftretenden Schwierigkeiten mit dem Management von Datenmengen und die präzise Festlegung, welche Daten für den Betrieb notwendig sind, sind zum Teil noch unklar (04-Z171).
„Definition eines einheitlichen Implementierungsstandards sein auf das einzelne Modell aufgebaut werden.“ (05-Z300)

Ein grosses Thema bildet die Datenpflege während des Betriebs. Zu klären ist, durch welche Partei die Datenpflege wahrgenommen wird und ob dies bei einer Bewirtschaftung durch Externe eine Grundleistung darstellt oder separat vergütet werden muss (05-Z297). Durch grössere Datennengen wird der Aufwand für die Datenpflege steigen (07-Z420). Wünschenswert wäre, die Datenmenge so gross wie nötig und so klein wie möglich zu halten.

„[…] die Versuchung möglichst viele Daten zu sammeln und auszuwerten um den Betrieb zu optimieren ist sehr gross […] all die Daten zu pflegen und das ist eines der grossen Risiken des Modells in der Betriebsphase.“ (07-Z424)

4.5.5 Auswirkungen der Methodik BIM auf die Planungsphase

Die meisten Projekte, die in der Schweiz mit der Methodik BIM bearbeitet werden befinden sich in der Planungsphase oder haben diese bereits abgeschlossen. Dementsprechend sind die Erfahrungswerte in der Planungsphase, im Vergleich mit den anderen Teilphasen, am grössten. Aus diesem Grund wird diese Teilphase mit einer zusätzlichen Frage beleuchtet, um die Auswirkungen darauf zu bestimmen.

Die stärkste Auswirkung der Methodik BIM in der Planungsphase ist die Verschiebung von Teilleistungen. Von den Planern werden zu einem früheren Zeitpunkt Leistungen verlangt, die bei der konventionellen Planung erst in einer späteren Phase erarbeitet und festgelegt werden. Demzufolge sollte der dafür vorgesehene Honoraranteil für die Erbringung der Leistung dem Planer früher vergütet werden.

„„Teil des Honorars was normalerweise bei der Ausschreibung- oder Ausführungsplanung angefallen wäre bereits in der Planungsphase ausbezahlt wird.“ (01-Z289)

„„Leistungen werden in eine frühere Phase verschoben.“ (02-Z311)

Mit der Verschiebung der Teilleistungen verändert sich auch die Planungstiefe zu diesem Zeitpunkt. Vom Planer wird eine vertiefte Bearbeitung seiner Leistung gefordert. Hierfür muss sich der Bauherr verstärkt mit seinen Anforderungen des Betriebs auseinandersetzen und notwendigen Grundlagen definieren. Dies wirkt sich grundsätzlich vorteilhaft auf die Entwicklung des Projektes aus, da beide Seiten früher und intensiver im Austausch sind.
„Es benötigt einfach eine genauere und umfassendere Arbeit vom Planer und des Bauherrn muss früher und klarer entscheiden, das wird ein Einfluss sein in der Planungsphase.“ (03-Z249)

„[...] und eine höhere Konkretisierung zu einem früheren Projektzeitpunkt.“ (05-Z334)

Während der Planungsphase wird verstärkt am Modell im 3D gearbeitet. Die 2D Planung wird nur noch dort angewendet, wo es aus Gründen der Effizienz nicht sinnvoll ist Bauteile oder Details in 3D zu erstellen. Dies eröffnet neue Möglichkeiten wie z.B. die Planprüfung oder Koordination am Modell.

„Planreviews und Prüfungen erfolgen digital und nicht mehr am 2D“ (02-Z313)

„Ähnlich wie bei der produzierenden Ebene in der Industrie hin zur “Industrie 4.0“ wird es auch in der Planungsbranche Einzug halten.“ (09-Z340)

Mit der Prozessoptimierung kann die Planung effizienter abgewickelt werden und es kann gegebenenfalls zu einer Verkürzung der Planungsphase führen. Ob sich daraus eine Vergünstigung für den Bauherrn ergibt, muss sich noch zukünftig zeigen.

„Ja hoffentlich im positiven Sinne wird die Planungsphase kürzer und effizienter ausfallen.“ (08-Z311)

„Ob es preiswerter wird wage ich noch zu bezweifeln.“ (04-Z211)

Fest steht, dass sich mit der Methodik BIM der Kreis der Interessengruppen in der Planungsphase erweitern wird. Es werden neue Rollen entstehen wie z.B. die des BIM Manager oder BIM Koordinator, die bei der Planung massgeblich mitwirken werden. Auch der Austausch und Einfluss des Betriebs wird in der Planungsphase zunehmen.

„Die neue Rolle des BIM-Manager, BIM-Koordinator, etc. werden sich stärker etablieren. „(02-Z311)

„Einfluss des Betriebs nimmt in der Planungsphase zu.“ (02-Z314)
4.6 Auswertung der Fragebögen der Experteninterviews

Frage 1: Die Kommunikation wird durch das Vorliegen eines digitalen Gebäudemodells verbessert.

Abbildung 17: Auswertung Frage 1 „Verbesserung Kommunikation“

Frage 2: Durch den Einsatz von Analysesoftware (z.B. Solibrie model checker, etc.) kann die Anzahl von Projektfehlern verringert werden.

Abbildung 18: Auswertung Frage 2 „Reduktion Projektfehler“
Frage 3: Die Koordination der einzelnen Fachbereiche (z.B. Lüftung, Sanitär, etc.) wird verbessert.

![Abbildung 19: Auswertung Frage 3 „Verbesserung der Koordination“](image)

Frage 4: Durch den Einsatz von Analysesoftware kann mittels Simulationen von Prozessabläufen ein effizienteres Gebäude erstellt werden.

![Abbildung 20: Auswertung Frage 4 „Mittels Simulation / Effizienteres Gebäude“](image)
Frage 5: Durch den Einsatz von Analysesoftware kann mittels Simulationen von unterschiedlichen Ausführungsszenarien die Bauzeit verkürzt werden.

Abbildung 21: Auswertung Frage 5 „Simulation / Bauzeitverkürzung“

Frage 6: Bessere Überprüfung von Entscheiden mittels digitalem Gebäudemodell.

Abbildung 22: Auswertung Frage 6 „Überprüfung Entscheide / Modell“
Frage 7: Zusammenführung von Informationen, die bei der konventionellen Planung auf diverse Pläne, Beschriebe und Dokumente verteilt sind, in einem Modell.

Aus Sicht aller Experten trifft die Aussage zu, wie Abbildung 23 zeigt. Der wesentlichste Vorteil besteht in der Zusammenführung aller Daten an einem Ort (01-Z396) und dem vereinfachten Zugriff auf diese (09-Z451). Wobei darauf zu achten ist, dass im Modell nur die Daten hinterlegt werden, die auch für den späteren Nutzen oder Betrieb der Liegenschaft benötigt werden (04-Z301).

Abbildung 23: Auswertung Frage 7 „Datenzusammenführung in einem Modell“

Frage 8: Schnellere Übernahme von Projektänderungen in die Planung.

Abbildung 24: Auswertung Frage 8 „Schnellere Übernahme Projektänderungen“
Frage 9: Vereinfachte Zertifizierung von Projekten in Bezug zu Nachhaltigkeit (BREEAM, Minergie, etc.), aufgrund der einfachen Nutzung der bereits hinterlegten Daten im Modell.

![Abbildung 25: Auswertung Frage 9 „Vereinfachte Zertifizierung“](image)

Frage 10: Effizientere Erstellung von Hochbauprojekten und damit einhergehender Kostenreduktion.

![Abbildung 26: Auswertung Frage 10 „Kostenreduktion / Hochbauprojekten“](image)
Frage 11: Planungskosten fallen, aufgrund der Verschiebung von Teilleistung, zu einem früheren Zeitpunkt an.

![Abbildung 27: Auswertung Frage 11 „Verschiebung Planungskosten“](image)

Frage 12: Die BIM Methodik ist noch neu auf dem Markt, dementsprechend gibt es noch geringe Erfahrungswerte wie Projekte effizient und gewinnbringend mittels BIM umgesetzt werden können.

![Abbildung 28: Auswertung Frage 12 „Geringe Erfahrungswerte / Umsetzung“](image)
Frage 13: Projektanforderungen, welche bei einer konventionellen Erstellung zu einem späteren Zeitpunkt definiert und präzisiert werden, müssen früher geklärt und entschieden werden.

![Abbildung 29: Auswertung Frage 13 „Frühere Klärung der Projektanforderungen“](image)

Frage 14: Die im Modell hinterlegten Daten erleichtern die Durchführung einer Due Diligence und reduzieren somit das Risiko bei einer Transaktion des Gebäudes.

![Abbildung 30: Auswertung Frage 14 „Durchführung Due Diligence“](image)
Frage 15: Durch das Vorliegen eines digitalen Gebäudemodells kann bei einer Transaktion ein höherer Preis erwirtschaftet werden.

Abbildung 31: Auswertung Frage 15 „Höherer Transaktionspreis“

Frage 16: Durchgehender Informationsfluss über den gesamten Lebenszyklus einer Immobilie dank der hinterlegten Daten im Modell.

Abbildung 32: Auswertung Frage 16 „Durchgehender Informationsfluss“
Frage 17: Der Betreiber (Facility Management) wird mit allen notwendigen Daten aus dem Modell versorgt, ohne die Daten aus verschiedenen Dokumenten ausfindig machen zu müssen.

Abbildung 33: Auswertung Frage 17 „Datenversorgung / Betreiber und FM“

Frage 18: Die Ausbildung von geeignetem und fähigem Personal, für den erfolgreichen Einsatz von BIM, muss erst noch aufgebaut werden.

Abbildung 34: Auswertung Frage 18 „Ausbildung geeignetes Personal“
4.7 Entwicklung der Methodik BIM in den kommenden 10 Jahren

Aus Sicht der Experten wird sich die Methodik BIM in den nächsten Jahren in der Baubranche etablieren und als Selbstverständlichkeit in den Planungsprozess integrieren.

„Ich bin mir sicher, dass BIM selbstverständlich und als Standard verwendet wird.“ (01-Z280)

„Ganz klar es wird ein Muss sein und wir werden nicht mehr darüber reden wer das kann, sondern die die den Schritt nicht gemacht haben werden aus dem Markt verdrängt.“ (09-Z303)

„Aber der Anteil an Fachplanern und Spezialisten die mit BIM arbeiten und dies als Selbstverständlichkeit sehen wird definitiv zunehmen.“ (07-Z434)

Aufgrund der oben beschriebene Entwicklung wird es auch für Bauherrn immer interessanter die Methodik BIM einzusetzen, obwohl sie bisher zurückhaltend waren, insbesondere aufgrund der anfänglichen Schwierigkeiten einer neuen Methode.

„[...] Hürden für Bauherrn BIM einzusetzen kleiner.“ (07-Z436)

„Alleine schon mit der Möglichkeit das solche Fachpersonen wie BIM-Manager, BIM-Koordinator oder Head of BIM auf dem Markt vorhanden sind erleichtert es massiv den Einstieg zu machen.“ (07-Z439)

Der Einsatz der Methodik BIM und der angestrebte Umfang ist immer abhängig von der Komplexität der Aufgabenstellungen. Bei Projekten, wie Spitälern oder Laborbauten wird kein Weg an der Methodik vorbeiführen, umsteigende Anforderungen der unterschiedlichen Interessengruppen synchronisieren und kontrollieren zu können.

„Ich sehe es so, dass BIM nicht in allen aber in Grossprojekten Standard wird.“ (02-Z303)

„Wobei bei Grossprojekten BIM zu 100% eingesetzt werden muss aufgrund der Komplexität dieser Aufgaben.“ (04-Z201)

Bei weniger komplexen Aufgaben, wie z.B. dem Wohnungsbau oder im kleineren Massstab ist der Einsatz der Methodik BIM sorgfältig zu überprüfen. Der Einsatz kann durch die Erfahrung der Planer gesteuert werden. Wenn diese einen grossen Erfahrungsschatz mitbringen, kann der Einsatz der Methodik BIM auch bei kleineren Projekten sinnvoll sein.
„Bei kleineren Aufgaben wird es weniger stark angewendet, je nachdem wie die Büros aufgestellt sind.“ (04-Z202)

„[…] Einfamilienhäuser oder Wohnbauten mit weniger als 9 Einheiten […].“ (10-Z351)

Inwieweit sich die Methodik bei den Unternehmern und auf der Baustelle durchsetzen wird, bleibt abzuwarten aber der Einsatz der Methodik BIM eröffnet realistische Möglichkeiten einer effizienten Vorfabrikation von Bauteilen ebenso wie die Nutzung in der Arbeitsvorbereitung.

„Bei den Unternehmen, die einen höheren Vorfertigungsgrad haben können wie z.B. Heizung, Lüftung, Kälte, Sanitär in den Gewerken sicherlich bei der Ausführung.“ (08-Z301)

Aus Sicht zweier Experten wird die Entwicklung der Methodik ähnligesehen, wie der bereits vollzogene Wechsel von der Handzeichnung zum Zeichnen mit CAD-Programmen.

„Es ist wie bei der damaligen Umstellung von der Handzeichnung zum CAD.“ (03-Z237)
5. Schlussbetrachtung

5.1 Fazit

Alle Experten sehen in der Methodik BIM ein signifikantes Potenzial für eine effizientere, termingerechtere und kostensicherere Umsetzung von Hochbauprojekten, insbesondere hinsichtlich der immer komplexeren Anforderungen, die ein Gebäude und dessen Erstellung in der heutigen Zeit erfüllen muss.

Mit den beschriebenen Vorteilen, welche die Methodik BIM mit sich bringt, leistet es einen wesentlichen Beitrag zur Optimierung der Prozesse in der gesamten Baubranche. In der Konsequenz nehmen sowohl Bauherren als auch Besteller momentan in Kauf, dass sich alle Branchenteilnehmer in der Schweiz noch in der Pionierphase befinden und unterstützen diese beim Einstieg in die Methodik BIM und den damit verbundenen anfänglichen Schwierigkeiten. Grundsätzlich ist jedoch bei jedem Projektstart die Frage zu stellen, in welchem Umfang die Methodik BIM zum Einsatz kommen soll, oder ob eine Umsetzung mit der konventionellen Planungsmethode größere Vorteile bringt.

Die Fragestellungen im Kapitel 1.2 können wie folgt beantwortet werden:

I. Was verstehen die Experten unter der Methodik BIM und welche Erfahrungen haben Sie damit gemacht?

Alle Experten verstehen BIM als Methodik zur Umsetzung von Hochbauprojekten, die zum einen aus einem digitalen Gebäudemodell besteht in dem alle notwendigen Daten für die Erstellung und den späteren Betrieb des Gebäudes enthalten sind, zum anderen aus der neuen Arbeitsweise die mit der Methodik BIM einhergeht.

II. Erleichtert und verbessert die Methodik BIM die Umsetzung von Hochbauprojekten?

Mit dem Einsatz der Methodik BIM wird aus Sicht der Experten die Umsetzung von Hochbauprojekten erleichtert und verbessert. Dies liegt daran, dass die Vorteile die Nachteile überwiegen. Die Vor- und Nachteile, die von den Experten genannt wurden sind unter der Beantwortung der Frage III und IV aufgeführt.

III. Welche Vorteile treten bei der Umsetzung von Hochbauprojekten mit der Methodik BIM auf?

Im Rahmen dieser Abschlussarbeit wurden folgende Vorteile bestimmt:

- Verbesserte Zusammenarbeit unter allen am Projekt beteiligten Personen
- Erhöhte Transparenz unter allen Beteiligten
• Frühzeitige Präzisierung des Projektes
• Disziplinierung aller Beteiligten
• Optimierung des Betriebs
• Verbesserte Kommunikation unter allen am Projekt beteiligten Personen
• Erhöhte Planungsqualität
• Bestehende Prozess werden hinterfragt, aktualisiert und optimiert
• Durchgängiger Informationsfluss
• Reduktion der Planungsfehler
• Höhere Kostensicherheit
• Höhere Kostengenauigkeit
• Höhere Terminsicherheit
• Frühzeitige Auseinandersetzung mit der Projektdefinition
• Langzeit-Betrachtung des Gebäudes rückt stärker in den Fokus
• Reduktion von Ausmassfehlern
• Vorfabrikation von Bauteilen aus Basis des Modells
• Verbesserte Überprüfung der Ausführung (BIM to field)
• Zentrale Datenablage

IV. Welche Nachteile treten bei der Umsetzung von Hochbauprojekten mit der Methodik BIM auf?

Im Rahmen dieser Abschlussarbeit wurden folgende Nachteile bestimmt:
• Geringe Erfahrung mit der Methode
• Unklarheiten in Bezug zur Honorierung der Methodik BIM
• Hoher Aufwand für die Implementierung der Methodik
• Leistungsfähigkeit der Software
• Verständnisfragen und die damit verbundene Unsicherheit
• Prozessabläufe die sich noch etablieren müssen
• Schwerfälligkeit des Modells, wenn zu viele Daten hinterlegt wurden
• Verschiebung von Honoraranteilen (nur bei Projektabbruch relevant)
• Höherer Aufwand für EDV und Datenbewirtschaftung
• Einschränkung der Kreativität durch Standardisierung
• Datenschnittstellen zwischen Ausführung und Betrieb
• Datenmanagement in der Betriebsphase
V. Welche Auswirkungen hat die Methodik BIM auf die Planungsphase?

In der Planungsphase erhoffen sich die Bauherren eine Verbesserung der Qualität der Planungsresultate und eine frühzeitige Erkennung von Projektfehlern. Dazu beitragen können die verbesserte Kommunikation und Koordination unter allen Beteiligten. Aufgrund erhöhter Planungsqualität und gleichzeitiger Kosten- und Terminsicherheit ist die Bereitschaft erkennbar, eine Honorarverschiebung in Kauf zu nehmen. Auf lange Sicht besteht sicherlich die unternehmerische Erwartungshaltung der Bauherren, dass die Erstellungskosten von Bauprojekten reduziert werden können, wenn alle die Methodik BIM professionell, effizient und schliesslich erfolgreich einsetzen.

VI. Was sind die Beweggründe des Bauherrn für die Umsetzung von Hochbauprojekten mit der Methodik BIM?

Für die Bauherren gibt es unterschiedliche Anreize mittels der Methodik BIM Bauvorhaben zu realisieren. Aus Sicht des Kantonsbaumeister Urs Kamber ist einer der Anreize zukunftsfähig zu bleiben und mit der Bauindustrie und deren Entwicklung Schritt zu halten. Ein weiterer Anreiz, ist den eigenen Mitarbeitern neue Perspektiven aufzeigen zu können, insbesondere für deren Entwicklung im Unternehmen. Oliver Lanter vom Universitäts Spital Zürich (USZ) sieht hingegen nur so eine Möglichkeit, die zukünftige Entwicklung des Spitals, mit seiner hohen Komplexität und dem beengten Umfeld in den kommenden Jahren realisieren zu können (07-Z331). Aus Sicht des Entwicklers Marc Lyon, tätig bei der Implemenia AG, ist die Methodik BIM an sich kein Rezept für den Erfolg eines Projektes. Es schafft jedoch die Möglichkeit anhand der höheren Qualität der Planung Projekte schneller und effizienter zu realisieren, was sich vorteilhaft auf die Kosten und somit auf die Rendite auswirken kann.

VII. Wie sehen die Experten die weitere Entwicklung der Methodik BIM in den kommenden 10 Jahren?

5.2 Diskussion

Abschliessend ist zu erwähnen, dass aufgrund der geringen Anzahl der geführten Interviews Vor- und Nachteile nur von einzelnen Experten erwähnt und beschrieben wurden. Deshalb hier der Hinweis, dass keine Allgemeingültigkeit aus der Aussage abgeleitet werden können. Tendenzen sind jedoch klar erkennbar.

5.3 Ausblick
Aus Sicht der Experten wird sich die Methodik BIM in der Schweizer Baubranche durchsetzen. Es ist sehr wahrscheinlich davon auszugehen, dass in 5-10 Jahren die Methodik BIM als Standardprozess in der Branche wahrgenommen wird. Die derzeitigen Diskussionen und Reibungspunkte werden sich demgemäss verändern, teilweise verschieben und teilweise verschwinden.

„Es ist einfach die Zukunft und so sehen wir die Umsetzung unseres ersten BIM-Projekts als Auseinandersetzung mit dieser.“ (03-Z119)

„Man redet nicht mehr darüber, kannst Du BIM, sondern es ist eine Voraussetzung.“ (09-Z220)

Ein weiteres spannendes Feld für den potenziellen Einsatz der Methodik BIM, welches derzeit nicht sehr stark mit der Methodik BIM in Verbindung gebracht wird, ist der Einsatz im Bereich Bauen im Bestand. Aufgrund eines zukünftig sehr grossen Projektumfangs schlummert darin ein immenses Potenzial für die Methodik BIM. Dies wurde bisher noch nicht vertieft untersucht und stellt eine interessante Forschungsfrage dar, die ein weiteres Untersuchungsfeld innerhalb der Baubranche darstellt.
Literaturverzeichnis

Anhang

Anhang 1: Fragebogen / Leitfaden Interviews 62
Anhang 2: Beispiel Transkript / Interview_01_Bruno Jung 69
Anhang 3: CD mit Datenmaterial 80
Anhang 1 Fragebogen / Leitfaden Interviews

CUREM – Center for Urban & Real Estate Management

0. Fragestellung Abschlussarbeit
 • Building Information Modeling (BIM) – Eine erste Einschätzung zu Vor- und Nachteilen bei der Umsetzung von Hochbauprojekten in der Schweiz aus der Sicht des Bauherrn.

0. Daten zur Person

0. Information zum Interview
 Datum: Uhrzeit:
 Ort:
 Dauer:

1. Teil: Kurzumfrage zur Person

1.1 Ausbildung?
 • Architekt/in
 • Bauingenieur/in
 • Fachangestellter/in
 • Ökonom/-in
 • Weitere: ..

1.2 Berufserfahrung Baubranche (in Jahren)?
 • 5-10
 • 10-15
 • 15-20
 • 20-40
 • Weitere: ..

1.3 Auf welcher Seite sind tätig?
 • Bauherr / Baudirektor
 • Entwickler
 • Planer
 • Behörden
 • Weitere: ..

1.4 Funktion im Unternehmen?
 • Mitarbeiter
 • Projektleiter
 • Geschäftsführung / Bereichsleiter
 • Weitere: ..
2 Teil_Kurzumfrage zu BIM

2.1 Was verstehen Sie unter BIM?

2.2 Haben Sie theoretisch oder praktisch mit BIM zu tun?
 - Theoretisch
 - Praktisch

2.3 Wie lange beschäftigen Sie sich schon mit BIM (in Jahren)?
 - 1-2
 - 2-5
 - 5-10

2.4 Wie viele Projekte haben Sie bereits mittels BIM realisiert?
 - Keines
 - 1 Projekt in Planung und Umsetzung
 - 2-5 Projekte in Planung und Umsetzung
 - 1 Projekt bereits umgesetzt
 - 2-5 Projekte bereits umgesetzt
3 Teil _ Erfahrung Experten

3.1 Welche Erfahrungen haben Sie mit BIM gemacht (Positiv / Negativ)?

3.2 Wird durch BIM die Umsetzung von Hochbauprojekten erleichtert / verbessert?

3.3 Welche Vorteile hat die Methodik BIM in den folgenden Teilphasen?
 3.3.1 In der Projektinitiierungsphase?
 3.3.2 In der Planungs- und Bewilligungsphase?
 3.3.3 In der Ausschreibungs- und Ausführungsphase?
 3.3.4 In der Betriebsphase?

3.4 Welche Nachteile hat die Methodik BIM in den folgenden Teilphasen?
 3.4.1 In der Projektinitiierungsphase?
 3.4.2 In der Planungs- und Bewilligungsphase?
 3.4.3 In der Ausschreibungs- und Ausführungsphase?
 3.4.4 In der Betriebsphase?

3.5 Wie sehen Sie die weitere Entwicklung von BIM in den nächsten 10 Jahren?

3.6 Welche Auswirkungen werden diese positiven und negativen Eigenschaften auf die Planungsphase haben?
4 Teil: Bereits bekannte Vor- und Nachteile der Methodik BIM

4.1 Können Sie folgende, recherchierte, Vor- und Nachteile bestätigen?

4.1.1 Die Kommunikation wird durch das Vorliegen eines digitalen Gebäudemodells verbessert.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:...........

4.1.2 Durch den Einsatz von Analysesoftware (z.B. Solibri model checker, etc.) kann die Anzahl von Projektfehlern verringert werden.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:...........

4.1.3 Die Koordination der einzelnen Fachbereiche (z.B. Luftung, Sanitär, etc.) wird verbessert.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:...........

4.1.4 Durch den Einsatz von Analysesoftware kann mittels Simulationen von Prozessabläufen ein effizienteres Gebäude erstellt werden.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:...........

4.1.5 Durch den Einsatz von Analysesoftware kann mittels Simulationen von unterschiedlichen Ausführungsszenarien die Bauzeit verkürzt werden.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:...........

4.1.6 Bessere Überprüfung von Entscheidungen mittels digitalen Gebäudemodell.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:...........
CUREM – Center for Urban & Real Estate Management

4.1.7 Zusammenführung von Informationen, die bei der konventionellen Planung auf diverse Pläne, Beschriebe und Dokumente verteilt sind, in einem Modell.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:

4.1.8 Schnellere Übernahme von Projektänderungen in die Planung.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:

4.1.9 Vereinfachte Zertifizierung von Projekten in Bezug zu Nachhaltigkeit (BREEAM, Minergie, etc.), aufgrund der einfachen Nutzung der bereits hinterlegten Daten im Modell.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:

4.1.10 Effizientere Erstellung von Hochbauprojekten und damit einhergehender Kostenreduktion.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:

4.1.11 Planungskosten fallen, aufgrund der Verschiebung von Teilteilung, zu einem früheren Zeitpunkt an.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:

4.1.12 Die Methode BIM ist noch neu auf dem Markt, dementsprechend gibt es noch gemäss Erfahrungswerte wie Projekte effizient und gewinnbringend mittels BIM umgesetzt werden können.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:

4.1.13 Projektanforderungen, welche bei einer konventionellen Erstellung zu einem späteren Zeitpunkt definiert und präzisiert werden, müssen früher geklärt und entschieden werden.
 ○ Ja
 ○ Nein
 ○ Vorteil
 ○ Nachteil
 ○ Anmerkungen:
4.1.14 Die im Modell hinterlegten Daten erleichtern die Durchführung einer Due Diligence und reduzieren somit das Risiko bei einer Transaktion des Gebäudes.
 o Ja
 o Nein
 o Vorteil
 o Nachteil
 o Anmerkungen............

4.1.15 Durch das Vorliegen eines digitalen Gebäudemodells kann bei einer Transaktion ein höherer Preis erwirtschaftet werden.
 o Ja
 o Nein
 o Vorteil
 o Nachteil
 o Anmerkungen............

4.1.16 Durchgehender Informationssitz über den gesamten Lebenszyklus einer Immobilie dank der hinterlegten Daten im Modell.
 o Ja
 o Nein
 o Vorteil
 o Nachteil
 o Anmerkungen............

4.1.17 Der Betreiber (Facility Management) wird mit allen notwendigen Daten aus dem Modell versorgt, ohne die Daten aus verschiedenen Dokumenten auseinander machen zu müssen.
 o Ja
 o Nein
 o Vorteil
 o Nachteil
 o Anmerkungen............

4.1.18 Die Ausbildung von geeignetem und fähigem Personal, für den erfolgreichen Einsatz von BIM, muss erst noch aufgebaut werden.
 o Ja
 o Nein
 o Vorteil
 o Nachteil
 o Anmerkungen............
5 Teil_Abschluss Interview

5.1 Weitere Anmerkungen und Ergänzungen zum geführten Interview?
Anhang 2 Beispiel Transkript / Interview_01_Bruno Jung

CUREM – Center for Urban & Real Estate Management

1. Interview_01_Bruno Jung
2. 0. Fragestellung Abschlussarbeit
3. 0. Building Information Modeling (BIM) – Eine erste Einschätzung zu Vor- und Nachteilen bei der
5. 0. Daten zur Person
6. Bruno Jung, Gesamtprojektleiter BB 12
7. Direktion Infrastruktur
8. Inselspital, Universitätsspital Bern
9. bruno.jung@insel.ch
10. 0. Information zum Interview
11. Datum: 13.06.2017
12. Uhrzeit: 15:00 Uhr
13. Ort: Bern, Inselspital
14. Dauer: Th 02m
15. 1. Teil Kurzumfrage zur Person
16. 1.1 Ausbildung?
17. o Architektur
18. o Bauingenieur/in
19. o Fachingenieure/in
20. o Ökonomie
21. o Weitere: Elektroingenieur
22. 1.2 Berufserfahrung Basisektor (in Jahren)?
23. o 5-10
24. o 10-15
25. o 15-20
26. o Weitere: 20-40
27. o Weitere:
28. 1.3 Auf welcher Seite sind Sie tätig?
29. o Bauherr / Besteller
30. o Entwickler
31. o Planer
32. o Behörden
33. o Weitere:
34. 1.4 Funktion im Unternehmen?
35. o Mitarbeiter
36. o Projektsieher
37. o Geschäftsführung / Bereichsleitung
38. o Weitere:
2 Teil_Kurzumfrage zu BIM

2.1 Was verstehen Sie unter BIM?

Wenn man jemand fragt was BIM ist, 58% sprechen immer nur von der Arbeitsmethode, aber ich meine BIM, die strukturierte Sammlung, Bearbeitung und Speicherung aller Daten die sowohl während der Baustelle anfallen an einem Ort über die gesamte Lebensdauer des Gebäudes. Somit besteht keine Gefahr, dass Daten verloren, verwaist oder verfälscht werden. Für mich ist der großer Vorteil von BIM die Strukturiertheit.

Ertragende Frage Interviewer: Sprich das an einem Ort alles gesammelt wird und auf diese Daten einfach zugegriffen werden kann.

Auch wenn bei BIM ein Teil der Daten nicht genutzt oder bearbeitet wird, besteht immer noch die Möglichkeit die Daten zu einem späteren Zeitpunkt nachzuvollziehen. Aufgrund der durchgehenden Datensammlung können alle Zwischenstände nachvollzogen werden.

BIM ist zudem ein digitales Bauen. Es hat ein bisschen.....

Gegenfragen des Interviewer: Sind Sie Architekt?

Antwort Interviewer: Ja.

Weiterführende Ausführung:

Ich erlebe relativ viele negative Reaktionen von Architekten auf die Thematik BIM, weil BIM sehr viel mit Strukturiertheit zu tun. Die Aussage eines Architekten war „das ist ja wie in der Industrie“. Bei so einem grossen Bau (Referenz Seitenhaus Inselspital) ist die Entwicklungsphase irgendwo abgeschlossen und dann geht es um die Produktion. Für das sind dann konkludente Daten extrem wichtig und notwendig.

2.2 Haben Sie theoretisch oder praktisch mit BIM zu tun?

○ Theoretisch

○ Praktisch

2.3 Wie lange beschäftigen Sie sich schon mit BIM (in Jahren)?

○ 1-2

○ 2-5

○ 5-10

2.4 Wie viele Projekte haben Sie bereits mittels BIM realisiert?

○ Keines

○ 1 Projekt in Planung und Umsetzung

○ 2-5 Projekte in Planung und Umsetzung

○ 1 Projekt bereits umgesetzt

○ 2-5 Projekte bereits umgesetzt
3 Teil_Erfahrung Experten

3.1 Welche Erfahrungen haben Sie mit BIM gemacht (Positiv / Negativ)?

Ergänzende Frage Interviewer: Warum wird etagenweise geplant? Ist dies aufgrund der späteren etagenweisen Erstellung des Gebäudes?

Ergänzende Frage Interviewer: Die Steigzonen selbst wurde nicht geprüft?

Antwort Interviewer: Doch, die Steigzonen wurden in einer früheren Phase auf Kollisionen geprüft.

Ergänzende Frage Interviewer: Was ist mit der Gleichschaltung gemeint? Beziehen Sie sich hier auf die Methodik oder Struktur wie der Fachplaner arbeitet oder auf die Software?

Antwort Interviewer: Es bezieht sich auf die Methodik, wie er die Ergebnisse im Büro ausarbeitet. Für uns wichtig ist, dass wir in der gewünschten Qualität und zum vereinbarten Termin liefern.

Ergänzende Frage Interviewer: Nutzen Sie open oder closed BIM?

Antwort Interviewer: Open BIM.

Ergänzende Frage Interviewer: Eigentlich ist die Überprüfung der Termine und Qualitäten nicht die Aufgabe des Bauherrn sondern des Generalsplaners (GP) (Abhängig von der Vertragsart, TU / GUDOP)?

Antwort Interviewer: Das ist so. Meines Erachtens kann der Bauherr über die Schutze und von den Bauherrn auch alle Modelle einsehen. 56% nutzen wir das Modell nicht, es bietet aber die Möglichkeit, Fragen anhand des Modells zu klären. Qualität kann für den Bauherrn am Modell nachvollzogen werden.

Ergänzende Frage Interviewer: Grundsätzlich haben Sie ja einen Generalsplaner der für die Termine, Kosten und Qualität gerade stehen muss, trotz dessen hat der Bauherr einen starken Fokus auf die Planungszeit der Planung?

Ergänzende Frage Interviewer: Funktioniert dies auf der Baustelle?

Antwort Interviewer: Ja, es funktioniert. Im Projektsaal ist die frühere Entscheidungsfindung bereits eingesetzt. Die Bewirtschaftung und der Betrieb müssen von uns erst noch abgeholter werden. Da die neue Methode noch nicht geprüft ist, dauert es noch etwas länger als bisher.

Ergänzende Frage Interviewer: Dies liegt daran, dass Sie bei der konventionellen Planung erst zu einem späteren Zeitpunkt hinzu kamen?

Antwort Interviewer: Ja, genau.

3.2 Wird durch BIM die Umsetzung von Hochbauprojekten erleichtert / verbessert?

Ich würde hier ein bisschen unterscheiden. Hochbauprojekte wie die eines Flughafens, die hochkomplex sind, sind für die Umsetzung mittels BIM sehr gut geeignet. Bei Projekten die weniger komplex sind, z.B. ein Wohngebäude für eine Pension, kann man darüber streiten ob mit BIM die Umsetzung erleichtert oder verbessert wird.
CUREM – Center for Urban & Real Estate Management

165 Ergründende Frage Interviewer: Würden Sie dann sagen, dass bei dieser Art von Projekten BIM nicht
166 unbedingt eingesetzt oder vorangestellt werden sollte?
168 Nicht zwangsläufig oder eher BIM leitet, wenn man die Daten im Betrieb nicht weiter benutzt
169 muss man darauf achten, dass man nicht zu viel BIM macht.
170 Ergänzende Frage Interviewer: Sprich in Abhängigkeit von Seiten Betrieb und der späteren Nutzung
der Daten?
172 Ja. Bei uns geht es in Bezug zur Erstellung eines Spitalneubaums am die Komplexität und deren
174 Berücksichtigung. Obwohl wir bei diesem Projekt eine sehr hohe Raumhohe haben, ist diese voll belegt
mit haustechnischen Installationen. Ich schlafe besser mit BIM. Bei komplexen Gebauden ist es ein
177 muss und bei einfachen Gebauden kann über den Einsatz von BIM streifen. Ich vermute, dass BIM
178 irgendwann Standard sein wird und sich die Frage dadurch endlöst.
179
3.3 Welche Vorteile hat die Methodik BIM in den folgenden Teilphasen?

180 3.3.1 In der Projektinitiierungsphase?
182 In dieser Phase ist die Anwendung von BIM am wenigstens wichtig, weil man noch im kreativen
184 Prozess ist. Wesentlich entscheidender ist jedoch, dass die Bedürfnisse der Bauherrn, die Anforderungen
185 an das Gebäude klar definiert. Ob dies mit BIM erzielt werden muss ist eher offen.
188
189 3.3.2 In der Planungs- und Bewilligungsphase?
190 Vor allem in der Planungsphase sehe ich sehr grosse Vorteile der Nutzung von BIM.
191 In der Bewilligungsphase eher nicht, da die Schwächen noch analog sind. Man druckt die Pläne
192 aus und gibt sie ab, was eigentlich schade ist. Ich glaube Schweden ist in dieser hinsicht sehr
193 weit, da dort die Möglichkeit besteht, dass Modell abgebildet wird bei der Bewilligung,
195 da im Modell selbst fast alle relevanten Daten wie Flächenangaben, Mindestabstände,
196 Brandabstände etc. hinterlegt sind. Das könnte man vermutlich einfach automatisieren.
197 Ergänzende Frage Interviewer: Wie bietet BIM Leistung bei diesem Projekt an BIM eingesetzt?
198 Nein, der Wettbewerb wurde 2013/2014 initiiert und wir hatten lange Diskussionen, ob wir
199 BIM als Bedingung voraussetzen wollen. Aufgrund der noch geringen Erfahrung und damit
200 eingerahmend fehlenden Referenzen ersteller BIM-Projekte halten wir die meisten Büros
201 disqualifizieren müssen. Dementsprechend wäre dieses nicht zielführende gewesen. Mit dem
202 Einsatz von BIM wurde bei diesem Projekt erst im Vorprojekt begonnen.
203 Ergänzende Frage Interviewer: Wie haben Sie dies dann konkret in diesem Projekt vertraglich
205 geklärt, ab wann BIM eingesetzt werden muss?
206 Dies wurde im Generalplanvertrag festgelegt, im gemeinsamen Einverständnis, ohne
207 Nachweis des Architekten, dass er bereits Projekte mittels BIM realisiert hat.
209
210 3.3.3 In der Ausschreibungs- und Ausführungsphase?
211 Bei der Ausschreibung der grossen Gewerke wollen wir das BIM-Modell dem Unternehmer als
213 Grundlage für die Erstellung des Angebots übergeben. Daraus erhoffen wir uns ein
214 genaueres Angebot. Wahrscheinlich müssen wir hier noch zweiseitig fahren. Die grosse
215 Diskussion ist nun, ob man nach NBK oder anhand des BIM-Modells ausschreiben soll?
217 Ergänzende Frage Interviewer: Warum nicht nur BIM? Was spricht dagegen?
218 Die Problematik hierbei ist, dass noch nicht all die Unternehmen täglich mit dem Modell
219 arbeiten zu können.
CUREM – Center for Urban & Real Estate Management

Interview: Bruno Jung

Ergänzende Frage Interviewer: Welchen Nutzen schieben Sie sich daraus das BIM-Modell in der Ausschreibungsphase ein?

Gewisse Angebote, bunter gesagt, da der Kunde die Massen auf Knopfdruck errechnen kann. Zum Beispiel bei der Fassade besteht die Möglichkeit die einzelnen Elemente und Massen sehr schnell zu ermitteln. Der gewisse Unternehmer kann so schnell Optimierungspotenzial erkennen.

Ergänzende Frage Interviewer: Sprich, durch den Einsatz wird das Risiko des Unternehmers reduziert und somit wird weniger Reserven eingeräumt?

Ja

Ergänzende Frage Interviewer: Und in der Ausführungsphase?

Ja, die Ausführungsphase haben wir noch keine Erfahrung. Aber ich sage, dass es in der Ausführungsphase weniger Diskussionen auf der Baustellegeführt werden, in welcher Leistung hinsichtlich und es gibt auch keine Auslegungsdiskussionen wie bei 2D Plänen.

Recht hat. Es ist relativ klar, was falsch liegt.

3.3.4 in der Betriebsphase?

Noch keine Erfahrung in der Betriebsphase.

3.4 Welche Nachteile hat die Methodik BIM in den folgenden Teilphasen?

3.4.1 in der Projektkoordinierungsphase?

Noch keine Erfahrung in der Projektkoordinierungsphase.

3.4.2 in der Planungs- und Bewilligungsphase?

Wesentlich erscheint der Einsatz von BIM in der Bewilligungsphase nicht gewinnbringend, da die Behörden noch mit der konventionellen Planung die Bewilligung sprechen.

Ergänzende Frage Interviewer: Negativ ist dies ja eigentlich nicht, es wird nur nicht das volle Potenzial von BIM ausgeschöpft.

Ja, die Planungsphase war natürlich von der Findung in der Phase der einzelnen Projektpartner, gekoppelt mit der Tatsache, dass das erste Projekt, mit welchem mittlerweile BIM umgesetzt wird, also Aktionsplan, den gemeinsamen Verständnis entwickelt. Das war es ein riesiger Aufwand bis alle BIM lernen konnten, da haben einige der Fachplaner die Software upgedated oder die Software gewechselt.

Ergänzende Frage Interviewer: Sprich die übrigen Probleme die man hat wenn man mit einer neuen Methode Aufgaben bearbeitet.

Ja, wir hatten zu Beginn große Diskussionen auf der Seite des Bauherrn, ob es nicht der nachfolgenden Wahrheit ist, BIM gleich bei einem so grossen Projekt einzusetzen. Inzwischen sagen ich aber, dank dem grossen Projekt haben wir genügend Zeit und Energie zu investieren.

Bei einem kleineren Projekt wäre es wohl einfacher gewesen wieder auf die konventionelle Ausführung zurückzugehen, da der Aufwand der Initialisierung sehr gross war für den Generalplaner und uns.

3.4.3 in der Ausschreibungs- und Befristungsphasen?

Noch keine Erfahrung in der Ausschreibungs- und Befristungsphasen.

3.4.4 in der Betriebsphase?

Noch keine Erfahrung in der Betriebsphase.
3.5 Wie sehen Sie die weitere Entwicklung von BIM in den nächsten 10 Jahren?

3.6 Welche Auswirkungen werden diese Vor- und Nachteile auf die Planungsphase haben?

Viele Initialisierungsauflagen wird entfallen. Eine große Diskussion war zudem die Honorierung der Planer. Dies haben wir mit unserem Generalplaner so gelöst, dass ein Teil des Honorars war normalerweise bei der Ausschreibung, oder Ausführungsplanung anfallen wäre bereits in der Planungsphase ausbezahlt wird.

Zu Beginn war dies eine grosse Diskussion, da viele Generalplaner die Erstellung eines Gebäudes letztlich BIM als Zusatzleistung angesehen hatten, was sich in den letzten 2 Jahren gelegt hat.
4. Teil: Bereits bekannte Vor- und Nachteile der Methodik BIM

4.1 Können Sie folgende, recherchierte Vor- und Nachteile bestätigen?

4.1.1 Die Kommunikation wird durch das Vorliegen eines digitalen Gebäudemodells verbessert.
- Ja
- Nein
- Vorteil
- Nachteil
- Anmerkungen: Alle reden vom gleichen.

4.1.2 Durch den Einsatz von Analysesoftware (z.B. Sollbrück model checker, etc.) kann die Anzahl von Projektkonflikten verringert werden.
- Ja
- Nein
- Vorteil
- Nachteil
- Anmerkungen: Keine

4.1.3 Die Koordination der einzelnen Fachbereiche (z.B. Lüftung, Sanitär, etc.) wird verbessert.
- Ja
- Nein
- Vorteil
- Nachteil
- Anmerkungen: Kollisionprüfung und Überprüfung der Zugänglichkeit von Steigzonen und deren Darstellung im 3D

4.1.4 Durch den Einsatz von Analysesoftware kann mittels Simulationen von Prozessabläufen ein effizienteres Gebäude erstellt werden.
- Ja
- Nein
- Vorteil
- Nachteil
- Anmerkungen: Es gibt 'noch' keine gute Software die dies wirklich leisten kann, wäre aber ein Vorteil wenn es diese Software gäbe.

4.1.5 Durch den Einsatz von Analysesoftware kann mittels Simulationen von unterschiedlichen Ausführungsvarianten die Bauzeit verkürzt werden.
- Ja
- Nein
- Vorteil
- Nachteil
- Anmerkungen: Da glaube ich noch nicht daran, wäre aber sicher ein Vorteil wenn es geeignete Software gab und man damit die Baustelle optimieren könnte, wenn es aber eine bessere Situation vorliegt.
4.1.6 Bessere Überprüfung von Entscheidungen mittels digitalen Gebäudemodells.
 - Ja
 - Nein
 - Vorteil
 - Nachteil

4.1.7 Zusammenschau von Informationen, die bei der konventionellen Planung auf diverse Pläne, Beschreibung und Dokumente verteilt sind, in einem Modell.
 - Ja
 - Nein
 - Vorteil
 - Nachteil

4.1.8 Schnellere Übernahme von Projektänderungen in die Planung.
 - Ja
 - Nein
 - Vorteil
 - Nachteil

4.1.9 Vereinfachte Zertifizierung von Projekten in Bezug zu Nachhaltigkeit (BREEAM, Minergie, etc.), aufgrund der einfachen Nutzung der bereitgestellten Daten im Modell.
 - Ja
 - Nein
 - Vorteil
 - Nachteil

4.1.10 Effizientere Erstellung von Hochbauprojekten und damit einhergehende Kostenreduktion.
 - Ja
 - Nein
 - Vorteil
 - Nachteil

4.1.11 Planungskosten fallen, aufgrund der Verschlebung von Teilung, zu einem früheren Zeitpunkt an.
 - Ja
 - Nein
 - Vorteil
 - Nachteil

Anmerkungen: Das ist wirklich ein Vorteil, da man direkt im Modell entscheiden und die jeweiligen Stakeholder abholen kann.
Anmerkungen: Daten sind an einem zentralen Ort und nicht verstreut auf diverse Dokumente.
Anmerkungen: Aber es wird auch mehr Wert vermittelt, da in einer frühen Phase mehr Informationen hinterlegt sind.
Anmerkungen: Es eignet sich aber sehr gut für die Ermittlung der Energieeffizienz.
Anmerkungen: Zuerst ist die Bauphysik noch nicht so weit. Hier ist die Industrie & Software noch hinterher.
Anmerkungen: Da durch die früheren anfallenden Kosten eine höhere Planungssicherheit erreicht wird.
4.1.12 Die Methode BIM ist nun auf dem Markt, dementsprechend gibt es noch geringe Erfahrungen, wie Projekte effizient und gezielt mithilfe BIM umgesetzt werden können.
- Ja
- Nein
- Vorteil
- Nachteil

4.1.13 Projektanforderungen, welche bei einer konventionellen Erstellung zu einem späteren Zeitpunkt definiert und präzisiert werden, müssen früh klarer und entschieden werden.
- Ja
- Nein
- Vorteil
- Nachteil

4.1.14 Die im Modell hinterlegten Daten erschaffen die Durchführung einer Due Diligence und reduzieren somit das Risiko bei einer Transaktion des Gebäudes.
- Ja
- Nein
- Vorteil
- Nachteil
Anmerkungen: War bei uns noch nicht der Fall, ist aber wahrscheinlich der Fall, da handelt die Modell eventuell Potenzial früher erkannt werden könnte.

4.1.15 Durch das Vorliegen eines digitalen Gebäudemodells kann bei einer Transaktion ein höherer Preis ermittelt werden.
- Ja
- Nein
- Vorteil
- Nachteil
Anmerkungen: Siehe 4.1.14

4.1.16 Durchgehender Informationstransfer über den gesamten Lebenszyklus einer Immobilie dank der hinterlegten Daten im Modell.
- Ja
- Nein
- Vorteil
- Nachteil
Anmerkungen: Wir werden das Revisionsmodell archivieren und eine Kopie erstellen, welche auf die auf die wichtigsten Daten reduziert wird.
4.1.17 Der Betreiber (Facility Management) wird mit allen notwendigen Daten aus dem Modell versorgt, ohne die Daten aus verschiedenen Dokumenten ausfindig machen zu müssen.
 - Ja
 - Nein

5.01 o Vorteil
 o Nachteil
 o Anmerkungen: Konsistenz der Daten durch Verlinkungen.

5.02

4.1.18 Die Ausbildung von geeignetem und fähigem Personal, für den erfolgreichen Einsatz von BIM, muss erst noch aufgebaut werden.
 - Ja
 - Nein
 - Vorteil
 o Nachteil
 - Anmerkungen: Es gibt ganz neue Berufsfelder, BIM Koordinatoren können aus unterschiedlichen Bereichen der Bautranche kommen.
548
549
550
551
552 5 Teil_Abschluss Interview
553
554 5.1 Weitere Anmerkungen und Ergänzungen zum geführten Interview?
Anhang 3 CD mit Datenmaterial

Ordnerstruktur CD
01 Abschlussarbeit als PDF
02 Fragebogen als PDF
03.01 Audio-Datei Interviews als mp3
03.02 Transkript Interviews als PDF
03.03 Auswertung Interviews als Excel
Ehrenwörtliche Erklärung

Die Arbeit hat in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen und wurde auch noch nicht veröffentlicht.

Zürich, den 28.08.2017

[Unterschrift]